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Abstract. Within the large class of Siklos spacetimes, we completely
classify Bach-flat metrics, which turn out to be related to a bi-harmonicity

property of the defining function. Using this classification, we tackle the

conformally Einstein property and several classes of conformally Einstein
Siklos metrics are then determined, including all the homogeneous exam-

ples.
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1. Introduction

A pseudo-Riemannian manifold (M, g) is said to be (locally) conformally
Einstein if every point p ∈ M admits an open neighborhood U and a positive
smooth function ϕ defined on U , such that (U, g̃ = ϕ−2g) is Einstein. As proved
in [3], this function ϕ satisfies the partial differential equation

(1) (n− 2)Hesϕ + ϕ% =
1

n
{(n− 2)∆ϕ+ ϕτ} g,

where n = dimM , Hesϕ = ∇dϕ is the Hessian of ϕ and % and τ denote the
Ricci tensor and the scalar curvature of g, respectively. To determine whether
a given pseudo-Riemannian metric is conformally Einstein, is a fundamental
problem in conformal geometry.

Integrating the conformally Einstein equation (1) is generally complicated.
As the conformally Einstein condition is trivial in dimension two and equivalent
to conformal flatness in dimension three, proper solutions may appear starting
from dimension four, in particular for spacetimes.

Let W denote the Weyl tensor of (Mn, g). The Bach tensor B of (Mn, g) is
defined as

(2) B = div1div4W +
n− 3

n− 2
W [%] ,
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where, with respect to a pseudo-orthonormal basis {ei}, with εi = g(ei, ei) =
±1, tensor W [%] is the Ricci contraction of W :

W [%] (X,Y ) =
∑
i,j

εiεjW (ei, X, Y, ej)%(ei, ej).

As such, B is completely determined by local components

(3) Bij = ∇k∇lWkijl +
1

2
%klWkijl.

Conformally Einstein manifolds are necessarily Bach-flat. Determining the
Bach-flat examples within a given class of metrics, is both a needed step toward
the classification of conformally Einstein metrics, and an interesting problem in
itself, which has been recently investigated by several authors, with particular
attention toward homogeneous examples. In dimension four, Bach-flat metrics
are precisely the critical points of the conformally invariant functional W =∫
M
‖W‖2dVg. Moreover, Bach-flatness is a necessary condition for being half

conformally flat (i.e., self-dual of anti-self-dual). Some recent results concerning
Bach-flat and conformally Einstein manifolds may be found in [1], [7], [8] and
references therein.

In this paper we completely classify Bach-flat examples and determine sev-
eral classes of conformally Einstein metrics, within the large class of Siklos
spacetimes [14]. Siklos spacetimes are solutions of Einstein’s field equations
with an Einstein-Maxwell source. They are of Petrov type N with cosmologi-
cal constant Λ < 0 and always admit a null non-twisting Killing field. Follow-
ing [14], [13], in global coordinates (x1, x2, x3, x4) = (v, u, x, y) Siklos metrics
have the general form

(4) g = − 3

Λx2
3

(
2dx1dx2 +Hdx2

2 + dx2
3 + dx2

4

)
,

where the defining smooth function H = H(x2, x3, x4) is arbitrary. These
metrics have been intensively studied. They have been interpreted as exact
gravitational waves propagating in the anti-de Sitter universe [13], and coincide
with the subclass (IV )0 of Kundt spacetimes [12]. Vacuum polarization in
Siklos spacetimes was investigated in [11]. Conformally flat [5] and some well-
known homogeneous [4] Siklos metrics have been proved to satisfy the Ricci
soliton equation.

The paper is organized in the following way. In Section 2 we shall give
some basic information on the curvature of Siklos metrics. In Section 3 we
shall determine all Bach-flat Siklos metrics, which turn out to be completely
characterized by a biharmonicity property of the defining function H. In fact,

setting ∆34 = ∂2

∂x3∂x3
+ ∂2

∂x4∂x4
, we prove that a Siklos metrics, as described in

(4), is Bach-flat if and only if ∆2
34H = 0. In Section 4 we turn our attention to

conformally Einstein examples, which are completely classified and described
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for several large subclasses, including all classes of homogeneous Siklos metrics.
Calculations have been checked using the software Maple 16 ©.

2. On the curvature of Siklos metrics

The Levi-Civita connection and curvature of an arbitrary Siklos metric g
have been described in [13] and [4]. Here we shall report below some information
which we will use to determine Bach-flat and conformally Einstein examples.

Consider an arbitrary Siklos metric g, as described in (4) with respect to a
system of global coordinates (x1, x2, x3, x4). Throughout the paper, we shall
use the notation ∂i = ∂

∂xi
for all indices i. The Levi-Civita connection ∇ of g

is completely determined by the following possibly non-vanishing components:

(1)

∇12 = 1
x3

3, ∇13 = − 1
x3

1,

∇22 = 1
2 (2H)1 + 1

2x3
(2H − x33H)3− 1

2 (4H)4,

∇23 = 1
2 (3H)1− 1

x3
2, ∇24 = 1

2 (4H)1,

∇33 = − 1
x3

3, ∇34 = − 1
x3

4,

∇44 = 1
x3

3.

A straightforward calculation yields that the possibly non-vanishing compo-
nents of the Riemann-Christoffel curvature tensor R of g are then given by

(2)

R1212 = − 3

Λx4
3

, R1323 = 3

Λx4
3

, R1424 = 3

Λx4
3

,

R2323 =
3(2H−x3(3H)+x2

3(∂2
33H))

2Λx4
3

, R2324 =
3(∂2

34H)
2Λx2

3

,

R2424 =
3(2H−x3(3H)+x2

3(∂2
44H))

2Λx4
3

, R3434 = − 3

Λx4
3

and the Ricci tensor of g, defined by %(X,Y ) = tr(Z 7→ R(Z,X)Y ), is com-
pletely described by the matrix
(3)

% = (%ij) =


0 −3x−2

3 0 0

−3x−2
3 − 6H−2x3(3H)+x2

3(∂
2
33H+∂2

44H)
2x2

3
0 0

0 0 −3x−2
3 0

0 0 0 −3x−2
3

 ,

where %ij = %(i, j). The scalar curvature of a Siklos metric is given by τ =
tr% = 4Λ. We report in the following proposition the classification of Einstein
Siklos metrics.

Proposition 2.1 ( [14], [13], [4]). For an arbitrary Siklos metric g, as described
in (4), the following conditions are equivalent:

(i) g is Einstein. More precisely, % = Λg;
(ii) g is Ricci-parallel (that is, ∇% = 0);
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(iii) the defining function H = H(x2, x3, x4) satisfies the PDE

(4)
2

x3
(3H)− ∂2

33H − ∂2
44H = 0.

Whenever H does not satisfy (4), a Siklos spacetime (being not Ricci-parallel) is
not locally symmetric, and its Ricci operator is of Segre type [(11, 2)], having an
eigenvalue of multiplicity four associated with a three-dimensional eigenspace.

It is worth noting that if the Siklos metric adheres to the vacuum Einstein
field equations with a cosmological constant, the equation outlined in part (iii)
of the aforementioned proposition must be duly established.

Next, the Weyl conformal curvature tensor field W of a pseudo-Riemannian
manifold (Mn, g) is defined by
(5)

W (X,Y )Z = R(X,Y )Z− 1

n− 2
(QX∧Y +X∧QY )Z+

τ

(n− 1)(n− 2)
(X∧Y )Z,

where (X ∧ Y )(Z) = g(Y,Z)X − g(X,Z)Y , R is the (1, 3)−curvature tensor
field and Q is the Ricci operator. Applying (4), (2) and (3) we determine the
possibly non-vanishing components Wijkh of the Weyl tensor of type (0, 4) with
respect to {∂i}, which we shall use in the next sections:

(6) W2323 = −W2424 = 3

4Λx2
3

(
∂2

33H − ∂2
44H

)
, W2324 = 3

2Λx2
3

∂2
34H.

As it is well-known, in dimension greater than three, a pseudo-Riemannian
manifold (M, g) is conformally flat if and only if W = 0. Hence, for Siklos
metrics by (6) one derives the following result.

Proposition 2.2 ( [4], [5]). A Siklos metric g, as described in (4), is locally
conformally flat if and only if the defining function H = H(x2, x3, x4) satisfies
the system of PDEs

(7) ∂2
33H − ∂2

44H = ∂2
34H = 0,

that is, when H is explicitly given by

(8) H(x2, x3, x4) =
1

2
T (x2)

(
x2

3 + x2
4

)
+ L(x2)x3 +M(x2)x4 +N(x2),

where T, L,M,N are arbitrary smooth functions.

3. Bach-flat Siklos spacetimes

We already recalled in the Introduction that conformally Einstein manifolds
are necessarily Bach-flat. For this reason, we shall now determine the Bach-flat
examples within the class of Siklos spacetimes. Setting ∆34 = ∂2

33 + ∂2
44, we

prove the following.
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Theorem 3.1. An arbitrary Siklos metric g, as described in (4), is Bach-flat
if and only if its defining function H is biharmonic with respect to ∆34, that
is, H satisfies the PDE

(1) ∆2
34H = ∂4

3333H + ∂4
4444H + 2∂4

3344H = 0.

Proof. We first use (3) and (6) in order to compute the components of the Ricci
contraction of W . A straightforward calculation yields that all components of
W [%] with respect to {∂i} vanish identically. We then proceed applying the
definition (2) of the Bach tensor B and we obtain its components with respect to
the basis {∂i}. We find that up to symmetries, the only possibly non-vanishing
component of the Bach tensor is given by

B22 = − 1
12Λx2

3

(
∂4

3333H + ∂4
4444H + 2∂4

3344H
)
,

that is, by the above definition of ∆34,

B22 = − 1
12Λx2

3∆2
34H.

Since Λ < 0, from the above expression, we conclude that a Siklos metric is
Bach-flat if and only if the PDE (1) holds. �

Corollary 3.2. In the special case where a Siklos metric g is of the form
(4) for a defining function H = H(x3, x4), g is Bach-flat if and only if H is
biharmonic (in the classical sense).

Remark 3.3. Observe that according to the fact that a conformally flat metric
is necessarily Bach-flat, any (smooth) solution of (7) also satisfies (1). In fact,
substituting from (7), one gets

∆2
34H = ∂4

3333H + ∂4
4444H + 2∂4

3344H

= ∂2
33(∂2

44H) + ∂2
44(∂2

33H) + 2∂2
33∂

2
44H

= 4∂2
33∂

2
44H

= 4∂2
34

(
∂2

34H
)

= 0.

The theory of biharmonic and pluriharmonic functions is well-established
and has a long tradition. As proved in the classical reference [2], the general
solution of the pluriharmonic equation

∆nu = 0,

where u = u(x1, ..., xn) and ∆ = ∂2
11 + ...+ ∂2

nn denotes the Laplace operator,
is given by

un = pvn−1 + wn−1,

where ∆vn−1 = ∆wn−1 = 0 and p is a degree 1 polynomial in the variables
x1, ..., xn (observe that the Laplace operator is denoted by ∆2 in [2], while here
we denote it by the more usual notation ∆). Adapting this general result to our
context, where we have a smooth function H = H(x2, x3, x4) which satisfies
∆2

34H = 0, by Theorem 3.1 we get the following.
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Corollary 3.4. An arbitrary Siklos metric g, as described in (4), is Bach-flat
if and only if its defining function H is of the form

(2) H(x2, x3, x4) = A(x2)U(x3, x4) +B(x2)V (x3, x4) +W (x3, x4),

where A,B,C are arbitrary smooth functions and U, V,W are harmonic func-
tions in the variables x3, x4, that is, they are solutions of ∆34u = 0.

4. Conformally Einstein Siklos spacetimes

We recall that the Cotton tensor C of an n-dimensional pseudo-Riemannian
manifold (M, g) is completely determined in local coordinates by

Cijk = (∇iSc)jk − (∇jSc)ik,

where Sc = %− τ
2(n−1)g is the Schouten tensor. The following key result holds.

Proposition 4.1. [7,9,10] Let (M, g) be a four-dimensional pseudo-Riemannian
manifold such that g̃ = eσg is Einstein. Then

(1) C −W (·, ·, ·,∇σ) = 0, and

(2) B = 0.

Remark 4.2. As reported in [7], conditions (1) and (2) listed in the above
Proposition 4.1 are also sufficient for a four-dimensional pseudo-Riemannian
manifold (M, g) to be conformally Einstein when the manifold is weakly generic,
that is, its Weyl tensor W defines an injective map from TM to ⊗3TM . How-
ever, it is easily seen that excluding the trivial conformally flat case, this does
not occur for general Siklos metrics.

To determine the kernel of W : TM → ⊗3TM , we express in coordinates
the condition W (X, ·, ·, ·) = 0, where X = Xi∂i is an arbitrary vector field on
(M, g), and we get

W (X, ·, ·, ·)223 = − 3
4λx2

3
(X3(332H − 442H) + 2X4342H) = 0,

W (X, ·, ·, ·)224 = − 3
4λx2

3
(X4(442H − 332H) + 2X3342H) = 0,

W (X, ·, ·, ·)332 = −W (X, ·, ·, ·)442 = 3
4λx2

3
X2(442H − 332H) = 0,

W (X, ·, ·, ·)324 = 3
2λx2

3
X2342H = 0.

Excluding the conformally flat solutions, equations (7) do not hold and so,
the above system necessarily yields X2 = X3 = X4 = 0, but X1 is arbitrary.
Therefore, the metric is not weakly generic.
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For an arbitrary Siklos metric, as described in (4), equation C−W (·, ·, ·,∇σ) =
0 in coordinates (x1, x2, x3, x4) yields the following system of independent PDE:
(1)

(442H − 332H)1σ = 0,

(342H)1σ = 0,

2(342H)3σ −
(
(332H)− (442H)

)
4σ = 4

x3
342H − 44443H − 44333H,(

(332H)− (442H)
)

3σ + 2(342H)4σ = 2
x3

(332H − 442H)− 23443H − 23333H.

Again by the assumption that g is not conformally flat, the first two equations
in (1) imply that 1σ = 0, so that σ only depends on (x2, x3, x4), and

4(342H)2 +
(
332H − 442H

)2 6= 0,

whence the last two equations of (1) determine 3σ, 4σ as

(2)


3σ =

det

∣∣∣∣∣∣∣
4
x3

342H − 44(∆34H) −(332H − 442H)
2
x3

(332H − 442H)− 23(∆34H) 2(342H)

∣∣∣∣∣∣∣
4(342H)2+(332H−442H)2

,

4σ =

det

∣∣∣∣∣∣∣
2342H 4

x3
342H − 4(∆34H)

(332H)− (442H) 2
x3

(332H − 442H)− 23(∆34H)

∣∣∣∣∣∣∣
4(342H)2+(332H−442H)2

,

where we took into account the definition of the Laplace operator ∆34. There-
fore, we have the following.

Proposition 4.3. Let g denote an arbitrary Siklos metric, as described in (4)
in terms of an arbitrary defining smooth function H(x2, x3, x4). If a conformal
metric g̃ = eσg is Einstein, then σ = σ(x2, x3, x4) satisfies the system of PDE
(2).

It is worthwhile to observe that σ is a completely arbitrary function of
variable x2. By Corollary 3.4, the defining function H for a Bach-flat Siklos
metric has the explicit form (2). The full integration of system (2) for H of the
form (2) is very difficult. Moreover, the above restrictions only give necessary
conditions for conformal Einstein metrics. We shall now obtain the explicit
classification and description of the conformally Einstein cases within several
relevant subclasses of Siklos metrics.

4.1. Siklos metrics with a harmonic defining function. We consider here
conformally Einstein Siklos metrics defined by a smooth function H(x2, x3, x4)
such that ∆34H = 0. Condition (1) for Bach-flatness is then automatically
satisfied. With regard to (2), it reduces to{

3σ = 2
x3
,

4σ = 0,
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so that by integration we get

(3) σ = 2 ln(x3) + f(x2),

for an arbitrary smooth function f . Both conditions listed in Proposition 4.1
are now satisfied. However, as we already observed, they are only necessary
conditions for a metric in order to be conformally Einstein. In fact, by (3) we
get that a smooth function ϕ such that g̃ = ϕ−2g = eσg, is necessarily of the
form

ϕ =
h(x2)

x3
,

for some smooth function h. For such function ϕ, equation (1) reduces to
h′′(x2) = 0. Therefore, by integrating we prove the following.

Theorem 4.4. Siklos metrics g, described by (4) for a harmonic defining func-
tion H, are conformally Einstein. In fact,

g̃ =
x2

3

(d1x2 + d2)2
g

is Einstein (more precisely, Ricci-flat).

4.2. Siklos metrics for a defining function obtained by separation of
variables. We now consider the case where the defining function H of a Siklos
metric satisfies the additional condition ∂2

34H = 0, whence H is of the special
form

(4) H(x2, x3, x4) = F (x2, x3) +G(x2, x4),

for some smooth functions F,G. As observed in [6], the family of Siklos metrics
described by condition (4) is very large, and it includes conformally flat Siklos
metrics as a very special case, because a function H as given by (8) is clearly
of the form (4). With regard to Bach-flatness, when H is of the form (4),
the corresponding Siklos metric is Bach-flat if and only if 33334F (x2, x3) −
44444G(x2, x4) = 0. Integrating system (2) for H of the form (4), we prove the
following.

Proposition 4.5. When H is described by (4), the corresponding Siklos metric
g satisfies both conditions listed in Proposition 4.1 if and only if

33334F + 44444G = 0

and

(5) σ = −2 ln
(
K(x2)
x3

(
332F (x2, x3)− 442G(x2, x4)

))
,

where K is an arbitrary smooth function.

We can now obtain the explicit classification of conformally Einstein Siklos
metrics defined by H of the form (4).
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Theorem 4.6. A Siklos metric g, corresponding to a defining function H given
by (4) for some smooth functions F,G, is conformally Einstein if and only if
(6)

F (x2, x3) = c1
6K(x2)

x3
3 + 1

2
α(x2)x2

3 + β(x2)x3 + γ(x2),

G(x2, x4) = 1
6c2K(x2)

(
12K(x2)K′′(x2)x4(α(x2)− µ(x2))

+12x4K(x2)2(α′′(x2)− µ′′(x2)) + 24K(x2)K′(x2)x4(α′(x2)− µ′(x2))

+3x4K(x2)2(µ(x2)2 − α(x2)2)

+K(x2)(3c2µ(x2)x2
4 + 6c2ν(x2) + 6c1x4β(x2)) + c22x

3
4

)
,

where c1, c2 are real constants and K,α, β, γ, λ, µ, ν are smooth functions. In
this case, g̃ = ϕ−2g is an Einstein metric, satisfying the Einstein equation
%̃ = λg̃ with λ = Λ(c21 + c22), where

ϕ(x2, x3, x4) = ± 1

x3

(
c1x3 − c2x4 +K(x2) (α(x2)− µ(x2))

)
.

Proof. Since σ is of the form (5) and eσ = ϕ−2, we have

ϕ(x2, x3, x4) = ±
K(x2)

(
332F (x2, x3)− 442G(x2, x4)

)
x3

.

We then apply (1) to such function ϕ. We get the following system of PDEs:

2(K(x2)3333F ) = 0,

2(K(x2)4443G) = 0,

K(x2)
(
333334F + 44444G

)
= 0,

K(x2)
(
33334F + 344444G

)
= 0,

1
2K(x2)(F +G)

(
44444G− 33334F

)
+ 2K(x2)

(
22334F − 22444G

)
+4K ′(x2)

(
2333F − 2443G

)
+K(x2)

(
3F3333F − 4G4443G

)
− 1

2

(
K(x2)(332F + 442G)− 4K ′′(x2)

)(
332F − 442G

)
= 0,

where, for the sake of brevity, we put F = F (x2, x3) and G = G(x2, x4). We
then integrate the above PDEs one by one, starting from the simpler ones,
taking into account ∆2

34H = 33334F + 44444G = 0 and K(x2) 6= 0, and we
find the solution described in the statement. �

5. Conformally Einstein homogeneous Siklos metrics

A pseudo-Riemannian manifold (M, g) is considered homogeneous when the
group of isometries exhibits transitive behavior on M . In other words, for
any two points p and q within M , there exists an isometry within (M, g) that
maps p to q. Consequently, (M, g) can be conceptualized as the coset space
G/H, equipped with a metric that remains invariant under G-transformations.
Homogeneous spaces hold significant importance in the field of geometry.
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All Siklos metrics admit at least one Killing vector field, namely, the vec-
tor field ∂/∂x1

in global coordinates (x1, x2, x3, x4). Siklos [14, p.262] also
completely classified all subclasses of Siklos metrics admitting some additional
Killing vector fields. The results of the previous sections can be applied to
these subclasses in order to determine Bach-flat and conformally Einstein ex-
amples within each of them. Here we obtain the classification of Bach-flat and
conformally Einstein cases for all Siklos metrics that admit at least four Killing
vector fields, that is, for all homogeneous Siklos metrics.

Siklos metrics in the following subclasses I),. . . ,V) all admit four linearly
independent Killing vector fields, except for the ones defined by H = ±x−2

3 (a
special case of V)), which admit five of them.

For each of subclasses I),. . . ,V), we start writing down the special form of the
defining function H for which (at least) three additional Killing vector fields oc-
cur, following the notation we used in this paper for the global coordinates, and
determine the Bach-flat examples. We then proceed computing the necessary
condition (1) of Proposition 4.1 and integrating equation (1), so determining
all conformally Einstein examples for that class. Following [14], A(xi) will de-
note an arbitrary smooth function of variables xi, while we shall use Aα(xi) to
denote a homogeneous function of degree α of the specified variables.

I) H = A−2(x3, x4). Since in this case, H is a homogeneous function of
degree −2 in the variables x3 and x4, more explicitly we have

H = a33x
−2
3 + a34x

−1
3 x−1

4 + a44x
−2
4 ,

for some real constants a33, a34, a44. A standard calculation then yields

∆2
34H = 120(a33x

−6
3 + a44x

−6
4 ) + 24a34(x−5

3 x−1
4 + x−1

3 x−5
4 ) + 8a34x

−3
3 x−3

4 .

Therefore, ∆2
34H = 0 if and only if a33 = a34 = a34 = 0, that is, only for H = 0.

In this case, the Siklos metric is isometric to the anti-de Sitter space [14],
which, being Einstein, we shall always exclude from our actual investigation.
Consequently, excluding the trivial case H = 0, by Theorem 3.1 we conclude
that the metric is never Bach-flat (in particular, never conformally Einstein).

Remark 5.1. The same argument also shows that the wider class of Siklos met-
rics

H = a33(x2)x−2
3 + a33(x2)x−1

3 x−1
4 + a44(x2)x−2

4 ,

for arbitrary smooth functions a33, a34, a44, does not include (nontrivial) Bach-
flat examples.

II) H = A(x3). Clearly, in this case, ∆2
34H = A(iv)(x3) = 0, whose general

integral is given by

H =
r1

6
x3

3 +
r2

2
x2

3 + r3x3 + r4,

for some real constants r1, . . . , r4. We then check when the corresponding
Siklos metric is conformally Einstein. Excluding the conformally flat case (cor-
responding to r1 = r2 = 0) and the Einstein case (r2 = r3 = 0), by Equation
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(1) we find that the necessary condition C −W (·, ·, ·,∇σ) = 0 yields

1σ = 4σ = 2r2 − x3(r1x3 + r2)3σ = 0.

By integration we then get

σ = −2 ln

(
K(x2)

r1x3 + r2

x3

)
,

for an arbitrary smooth function K(x2). Now, the equation (1) is satisfied if
and only if

(1) r1K
′(x2) = 4K ′′(x2)(r1x3 + r2) +K(x2)(2r1r3 − r2

2) = 0.

As r1K
′(x2) = 0, we consider the following two cases:

First case: r1 6= 0. Then, K(x2) = c1 is a real constant, and the above
equation (1) yields c1(2r1r3−r2

2) = 0 whence, excluding the trivial case c1 = 0,
we conclude that 2r1r3 − r2

2 = 0.

Second case: r1 = 0. Then, the above equation (1) reduces to

r2(4K ′′ − r2K) = 0.

Observe that since r1 = 0, necessarily r2 6= 0, otherwise the metric is confor-
mally flat. So, 4K ′′ − r2K = 0, which we can completely integrate according
to whether r2 < 0 or r2 > 0.

Thus, we proved the following.

Theorem 5.2. Homogeneous Siklos spacetimes determined by a defining func-
tion H = A(x3):

• are Bach-flat if and only if H = r1
6 x

3
3 + r2

2 x
2
3 + r3x3 + r4, for some real

constants r1, . . . , r4.
• are (proper) conformally Einstein if and only if H is of the above form

and one of the following cases occurs:

(a) r3 =
r22
2r1
6= 0. In this case, g̃ = ϕ−2g is an Einstein metric,

satisfying %̃ = λg̃ with λ = (r1c1)2Λ, where

ϕ = c1

(
r1 +

r2

x3

)
,

for some real constant c1.
(b) r1 = 0 < r2. In this case, g̃ = ϕ−2g is a Ricci-flat metric, where

ϕ =
r2

x3

(
c1 cosh

(√r2

2
x2

)
+ c2 sinh

(√r2

2
x2

))
,

for some real constants c1, c2.
(c) r1 = 0 > r2. In this case, g̃ = ϕ−2g is a Ricci-flat metric, where

ϕ =
r2

x3

(
c1 cos

(√−r2

2
x2

)
+ c2 sin

(√−r2

2
x2

))
,

for some real constants c1, c2.
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III) H = A(x2)x2
3. It is easily seen that ∆2

34H = 0. Therefore, all homo-
geneous Siklos metrics within this class are Bach-flat. Apart from the trivial
case A(x2) = 0, these spaces are neither Einstein nor conformally flat. With
regard to conformally Einstein examples, we first compute the necessary con-
dition C −W (·, ·, ·,∇σ) = 0 listed in Proposition 4.1. Rewriting system (1) for
H = A(x2)x2

3 6= 0, we get

1σ = 4σ = 2− x33σ = 0,

which by integration gives at once

σ = −2 ln

(
K(x2)

x3

)
,

for an arbitrary function K(x2). A direct calculation then yields that equation
(1) is now equivalent to the following differential equation

(2) A(x2)K(x2)− 2K ′′(x2) = 0.

A general result about ODE ensures that equation (2) admits a solution for
any given smooth datum A(x2). Therefore, we proved the following result.

Theorem 5.3. All homogeneous Siklos spacetimes determined by a defining
function H = A(x2)x2

3 are conformally Einstein (in particular, Bach-flat). In

fact, g̃ = ϕ−2g = eσg is a Ricci-flat metric, where ϕ = K(x2)
x3

and K is deter-

mined as a solution of (2).

IV) H = x2β−2
2 A(xβ2x3). In this case, a standard calculation yields

∆2
34H = x6β−2

2 A(iv)(x3x
β
2 )

so that by integration we get that ∆2
34H = 0 if and only if

H = x2β−2
2

(r1

6
(xβ2x3)3 +

r2

2
(xβ2x3)2 + r3(xβ2x3) + r4

)
,

for some real constants r1, . . . , r4.
By Proposition 2.2 it easily follows that these metrics are conformally flat

when r1 = r2 = 0 and are Einstein when r2 = r3 = 0, so we shall exclude
these trivial solutions. We have that for such defining function H, system (2)
becomes

1σ = 4σ = 2r2x
4β−2
2 − x33σ(r1x

5β−2
2 x3 + r2x

4β−2
2 ) = 0,

which by integration gives

σ = −2 ln

(
K(x2)(r1x

β
2x3 + r2)

x3

)
,
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where K(x2) is an arbitrary smooth function. The conformally Einstein equa-
tion (1) is now equivalent to

(3)


K(x2)

(
x4β

2 (2r1r3 − r2
2) + 4r1βx

β
2x3(β − 1)

)
+8r1βx

β+1
2 x3K

′(x2) + 4x2
2K
′′(x2)(r2 + r1x

β
2x3) = 0,

2r1x
β−1
2 (βK(x2) + x2K

′(x2)) = 0.

From the second equation in (3) we have the following two cases:

First case: r1 6= 0. Then, βK(x2) + x2K
′(x2) = 0 and by integration we

get K(x2) = k1x2
−β , for some real constant k1 6= 0. We substitute this into

the first equation of (3) and we get

x3β
2 (2r1r3 − r2

2) + 4x−β2 r2β(β + 1) = 0,

for all values of x2. If β = 0 the above equation reduces to 2r1r3− r2
2 = 0, that

is, r3 =
r22
2r1

. For β 6= 0 it yields

2r1r3 − r2
2 = r2β(β + 1) = 0

whence, excluding the conformally flat and Einstein cases, β = −1 and again
2r1r3 − r2

2 = 0.

Second case: r1 = 0. Since r2 6= 0 in order to exclude the Einstein case,
the first equation in (3) yields

(4) r2x
4β
2 K(x2)− 4x2

2K
′′(x2) = 0,

and a standard result about ODE ensures that equation (4) admits a solution.
Therefore, we proved the following.

Theorem 5.4. Homogeneous Siklos spacetimes determined by a defining func-

tion H = x2β−2
2 A(xβ2x3):

• are Bach-flat if and only if

H = x2β−2
2

(r1

6
(xβ2x3)3 +

r2

2
(xβ2x3)2 + r3(xβ2x3) + r4

)
,

for some real constants r1, . . . , r4.
• are (proper) conformally Einstein if and only if H is of the above form

and one of the following cases occurs:

(a) β ∈ {0,−1} and r3 =
r22
2r1

. In the first case, g̃ = ϕ−2g = eσg is an

Einstein metric, satisfying %̃ = λg̃ with λ = (k1r1)2Λ, where

ϕ =
k1x
−β
2 (r1x

β
2x3 + r2)

x3
,

for some real constant k1.
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(b) r1 = 0. In this case, g̃ = ϕ−2g = eσg is Ricci-flat, where

ϕ =
K(x2)(r1x

β
2x3 + r2)

x3

and K(x2) is determined, depending on the sign of r2 6= 0, as a
solution of equation (4).

V) H = ±xα3 . It is easy to check that in this case,

∆2
34H = ±α(α− 1)(α− 2)(α− 3)xα−4

3 .

Therefore, ∆2
34H = 0 if and only if α ∈ {0, 1, 2, 3}. Excluding the Einstein

(α = 0, 3) and conformally flat solutions (α = 0, 1), the only non-trivial case
is α = 2. But then, H = ±x2

3, which is the special case of type III) obtained
setting A(x2) = ±1. Observe that equation 2 now reduces to

±K(x2)− 2K ′′(x2) = 0.

Consequently, upon solving the aforementioned second-order ordinary differen-
tial equation, we have the following conclusion.

Theorem 5.5. Homogeneous Siklos spacetimes determined by a defining func-
tion H = ±xα3 :

• are Bach-flat if and only if α ∈ {0, 1, 2, 3}.
• For α = 0, 3 (respectively, α = 0, 1) these homogeneous spaces are Ein-

stein (respectively, conformally flat). For α = 2 they are conformally
Einstein. In this case, g̃ = ϕ−2g = eσg is an Einstein metric, satisfying
%̃ = λg̃ with λ = ...., where

σ = −2 ln

(
K(x2)

x3

)
and K(x2) =

{
c1 cosh( x2√

2
) + c2 sinh( x2√

2
) if H = x2

3,

c1 cos( x2√
2
) + c2 sin( x2√

2
) if H = −x2

3,

for some real constants c1, c2.

We summarize the complete classification of Bach-flat and conformally Ein-
stein homogeneous Siklos metrics in the following Table I. For each class of ho-
mogeneous Siklos spacetimes, we list the type with the defining function H and
the cases where H gives rise to Bach flat metrics and proper (that is, neither
Einstein nor conformally flat) conformally Einstein metrics. The checkmark
“X” in the column “Bach-flat” (respectively, “Conformally Einstein”) means
that the property holds for all homogeneous Siklos metrics with such defining
function H. The checkmark “”means that the corresponding property does not
hold for homogeneous Siklos metrics with such defining function H. It may be
observed that very different behaviours occur in the different cases.
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Defining H Bach-flat Conformally Einstein

I): k1
x23

+ k2
x3x4

+ k3
x24

II): A(x3) r1
6
x3

3 + r2
2
x2

3 + r3x3 + r4 r1(2r1r3 − r2
2) = 0

III): A(x2)x2
3 X X

IV): x2β−2
2 A(x3x

β
2 )

x2β−2
2

(
r1
6

(xβ2x3)3

+ r2
2

(xβ2x3)2 + r3(xβ2x3) + r4

) either r1 = 0 or

β ∈ {0,−1}, r3 =
r22
2r1

V): ±xα3 α ∈ {0, 1, 2, 3} α = 2

Table I: Homogeneous Bach-flat and (proper) conformally Einstein Siklos metrics

Appendix: conformally symmetric Siklos metrics

As we showed in the previous section, the study of conformally Einstein
Siklos metrics leads to several remarkable examples. The same is not true for
conformal symmetry. We briefly recall that a pseudo-Riemannian manifold
(M, g) is (locally) conformally symmetric if ∇W = 0, W denoting, as before,
the Weyl curvature tensor. Proper conformally symmetric manifolds are the
ones that are neither conformally flat nor locally symmetric. For Siklos metrics
we have the following result.

Proposition 5.6. A Siklos metric is locally conformally symmetric if and only
if it is conformally flat.

Proof. Starting from equations (1) and (6), we computed the components of
∇W with respect to coordinates (x1, x2, x3, x4). Up to symmetries, the possibly
non-vanishing components are the following:

(∇2W )1224 = (∇2W )2334 = 3
2Λx3

3
342H,

(∇2W )2324 = 3
2Λx2

3
2343H,

(∇2W )2424 = −(∇2W )2323 = 3
4Λx2

3

(
2443H − 2333H

)
,

(∇2W )2434 = −(∇2W )1223 = 3
4Λx3

3

(
442H − 332H

)
,

(∇3W )2323 = −(∇3W )2424 = 3
4Λx3

3

(
2(332H − 442H)− x3(3443H − 3333H)

)
,

(∇3W )2324 = 3
2Λx3

3

(
2342H + x34332H

)
,

(∇4W )2323 = −(∇4W )2424 = − 3
4Λx3

3

(
− 4342H + x3(4443H − 4333H)

)
,

(∇4W )2324 = − 3
2Λx3

3

(
332H − 442H − x33443H

)
.

Setting ∇W = 0, we immediately get equations (7), which characterize confor-
mally flat Siklos metrics. �
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