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Abstract. Let C = SCR be a (faithfully) semidualizing bimodule. This
paper begins with the introduction of the concepts of C-fpn-injective

R-modules and C-fpn-flat S-modules. Subsequently, we investigate var-

ious properties associated with classes of modules characterized by C-
fpn-injective and C-fpn-flat dimensions. For instance, we explore Foxby

equivalence and the existence of preenvelopes and covers in relation to

these classes of modules. Finally, we analyze the exchange properties
of these classes and the connections between preenvelopes (or precovers)

and Foxby equivalence, particularly within the context of almost excellent

extensions of rings.
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1. Introduction

The notion of fpn-injective (resp. fpn-flat) modules was introduced by Wei
and Zhang in [18] as a generalization of fp-injective and FPn-injective (resp.
fp-flat and FPn-flat) modules, where fp-injective and fp-flat modules were
studied by Garkusha and Generalov in [8], and also FPn-injective and FPn-
flat modules were introduced by Bravo and Pérez in [2]. The extension of the
concept of a semidualizing module to a pair of general associative rings was
made by Holm and White, in [13]. Also, they studied Auslander and Bass
classes under a semidualizing bimodule, and then the notions of C-flat, C-
projective, and C-injective modules were introduced. Here, C = SCR stands
for a semidualizing bimodule. Recently, some the homological results about
relative injective and flat modules according to semidualizing bimodules have
been proved, see [11,13,19]) for more details.

In [19], Wu and Gao studied the notion of C-FPn-injective (resp. C-FPn-
flat) modules. They investigated Foxby equivalence in relation to these mod-
ules, proved that the classes FInC(R) and FFnC(S) are preenveloping and cover-
ing, where FInC(R) and FFnC(S) are the classes of C-FPn-injective R-modules
and C-FPn-flat S-modules.
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In Section 2, we state some required concepts and results. For example,
the definitions of fp-injective, fp-flat, FPn-injective, FPn-flat, fpn-injective,
fpn-flat, C-FPn-injective, and C-FPn-flat modules provide motivation for the
definition of C-fpn-injective and C-fpn-flat modules as common generaliza-
tions of these concepts. It is noteworthy that this approach enables us to deal
with several important concepts on homological theory comprehensively. So,
in Section 3, we introduce and review the concepts of C-fpn-injective (resp. C-
fpn-flat) modules as a common generalization of modules of the classes FInC(R)
and WIC(R) (resp. FFnC(S) and WFC(S)), where WIC(R) and WFC(S)
are considered as a class of C-weak injective R-modules and C-weak flat S-
modules. Then we obtain some results of homological relationships between
the classes fpnI(S)≤k, fpnF (R)≤k, CfpnI(R)≤k, CfpnF (S)≤k, AC(R), and
BC(S), where these classes are the class of S-modules with fpn-injective di-
mension at most k, the class of R-modules with fpn-flat dimension at most
k, the class of R-modules with C-fpn-injective dimension at most k, the class
of S-modules with C-fpn-flat dimension at most k, Auslander class, and Bass
class under faithfully semidualizing bimodules C, respectively. Then, using
these results, we investigate Foxby equivalence relative to the theses classes, see
Theorem 3.9. Also, we prove that the classes CfpnI(R)≤k and CfpnF (S)≤k
are preenveloping and covering, see Theorem 3.17.

Section 4 considering faithfully semidualizing module C is devoted to the
exchange properties of these classes, as well as preenvelopes, precovers and
Foxby equivalence, under change of rings, see Theorems 4.7, 4.8 and 4.17.
Section 5 is dedicated to the conclusion.

2. Preliminaries

Throughout, n is a positive integer, R and S are two fixed associative rings
with units. all R- or S-modules are understood to be unital left R- or S-
modules (unless specified otherwise). SMR is used to denote that M is an
(S,R)-bimodule which means that M is both a left S-module and a right R-
module, and these structures are compatible. Also, right R- or S-modules are
considered as left modules over the rings Rop and Sop. We use Mod R or Mod
S as a class of left R- or S-modules.

Definition 2.1. ( [2,10]) An R-module M is finitely n-presented if there is an
exact sequence

Pn −→ Pn−1 −→ · · · −→ Pi −→ · · · −→ P1 −→ P0 −→M −→ 0,

where each Pi is a finitely generated free R-module for all 0 ≤ i ≤ n. FPn(R) is
considered as a class of all finitely n-presented R-modules. In case n = 0, n = 1
and n = ∞, FP0(R), FP1(R) and FP∞(R) are classes of all finitely gener-
ated, finitely presented and super finitely presented R-modules, respectively. A
ring R is n-coherent if FPn(R) ⊆ FPn+1(R).
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Definition 2.2. ( [2,9,24]) An R-module M is FPn-injective or (n, 0)-injective

(resp. FPn-flat or (n, 0)-flat) whenever Ext1R(D,M) = 0 (resp. TorR1 (D,M) =
0) for any D ∈ FPn(R) (resp. FPn(Rop)), and in case n = ∞, M is weak
injective (resp. weak flat). The symbols (resp. FPn-Flat(R)) and WI(R)
(resp. WF(R)) are classes of these modules, respectively.

Definition 2.3. ( [18]) An R-module M is fpn-injective (resp. fpn-flat) when
for every exact sequence 0 −→ K1 −→ K2 with K1,K2 ∈ FPn(R) (resp.
FPn(Rop)), the induced sequence HomR(K1,M) −→ HomR(K2,M) −→ 0
(resp. 0 −→ K1 ⊗R M −→ K2 ⊗R M) is exact. fpnI(R) (resp. fpnF (R)) is
considered as a class of these modules.

By [2, Proposition 1.7(1)], FPn-Inj(R) ⊆ fpmI(R) (resp. FPn-Flat(R) ⊆
fpmF (R)) for any m ≥ n. But the opposite is not true, see Example 3.3.

Definition 2.4. ( [11])

(i) An (S,R)-bimodule C = SCR is semidualizing when the following con-
ditions hold:
(a1) C ∈ FP∞(S);
(a2) C ∈ FP∞(Rop);
(b1) The homothety map Sγ : SSS −→ HomRop(C,C) is an isomor-

phism;
(b2) The homothety map γR : RRR −→ HomS(C,C) is an isomor-

phism;
(c) ExtiS(C,C) = 0 = ExtiRop(C,C) for all i ≥ 1.

A semidualizing bimodule SCR is faithfully semidualizing whenever HomS(C, Y ) =
0 (resp. HomRop(C,X) = 0), then Y = 0 (resp. X = 0) for every mod-
ule SY (resp. XR).

(ii) The Auslander class AC(R) (resp. Bass class BC(S) ) with respect to
C consists of all R-modules A (resp. S-modules B) such that for all
i ≥ 1

(A1) TorRi (C,A) = 0 (resp. ExtiS(C,B) = 0);

(A2) ExtiS(C,C ⊗R A) = 0 (resp. TorRi (C,HomS(C,B)) = 0);
(A3) The natural evaluation homomorphism µA : A −→ HomS(C,C⊗R

A) (resp. νB : C ⊗R HomS(C,B) −→ B) is an isomorphism of
R-modules (resp. S-modules).

By ( [13, Proposition 4.1]), we have the following equivalence:

AC(R)
C⊗R−
∼

// BC(S)
HomS(C,−)

oo

Definition 2.5. ( [19]) An R-module M is C-FPn-injective if M = HomS(C,X)
for some X ∈ FPn-Inj(S). An S-module N is C-FPn-flat if N = C ⊗R Y for
some Y ∈ FPn-Flat(R). In case n =∞, M ∈ WIC(R) and N ∈ WFC(S).
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Definition 2.6. Suppose that Y = · · · f2−→ P1
f1−→ P0

f0−→ U −→ 0 is a
projective resolution of U in Mod R. Then Y is said to be Y-finitely presented
when U,Ker(fi) ∈ FP1(R) for any i ≥ 0.

There are examples of Y-finitely presented, see Example 3.5(ii).

The following proposition is similar to Proposition 7.2 and Remark 4 from
[13], but for non-commutative rings.

Proposition 2.7. The following assertions are true.

(i) A ∈ AC(R) if and only if A∗ ∈ BC(Rop);
(ii) B ∈ BC(R) if and only if B∗ ∈ AC(Rop).

Definition 2.8. The fpn-injective dimension of an S-module M is defined
such that fpn.idS(M) ≤ k when there is an exact sequence

0 −→M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0

in Mod S, where Ii ∈ fpnI(S) for all 0 ≤ i ≤ k. Also, the fpn-flat dimension
of an R-module N is defined such that fpn.fdR(N) ≤ k when there is an exact
sequence

0 −→ Jk −→ Jk−1 −→ · · · −→ J1 −→ J0 −→ N −→ 0

in Mod R, where Ji ∈ fpnF (R) for all 0 ≤ i ≤ k. Set fpn.idS(M) =∞ (resp.
fpn.fdR(N) =∞) if no such k exists.

fpn.idS(M) ≤ 0 if and only if M ∈ fpnI(S), and fpn.fdR(N) ≤ 0 if and
only if N ∈ fpnF (R).

In the next lemma under a faithfully semidualizing bimodule C = SCR, we
show that fpnI(S)≤k ⊆ BC(S) and fpnF (R)≤k ⊆ AC(R).

Lemma 2.9. The following assertions are true.

(i) fpnI(S)≤k ⊆ BC(S);
(ii) fpnF (R)≤k ⊆ AC(R).

Proof. (i). First, we prove that for k = 0, fpnI(S) ⊆ WI(S). Consider, Y-
finitely presented Y = · · · −→ Pj −→ Pj−1 −→ · · · −→ P1 −→ P0 −→ U −→ 0
in Mod S. Then we have 0 −→ K0 −→ P0 −→ U −→ 0, where K0, P0, U ∈
FPn(R). So if I ∈ fpnI(S), then HomS(P0, I) −→ HomS(K0, I) −→ 0 is
exact. Hence Ext1S(U, I) = 0, and then I ∈ WI(S). Consequently, fpnI(S) ⊆
BC(S) from [11, Theorem 2.2]. So for M ∈ fpnI(S)≤k we have

0 −→M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0,

where Ii ∈ BC(S) for all 0 ≤ i ≤ k. Therefore by [13, Corollary 6.3], M ∈
BC(S).

(ii). Assume that N ∈ fpnF (R)≤k. Then we have

0 −→ Jk −→ Jk−1 −→ · · · −→ J1 −→ J0 −→ N −→ 0,
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where Ji ∈ fpnF (R) for all 0 ≤ i ≤ k. Hence by [17, Lemma 3.53], we have

0 −→ N∗ −→ J∗0 −→ J∗1 −→ · · · −→ J∗k−1 −→ J∗k −→ 0,

where J∗i ∈ fpnI(Rop) for all 0 ≤ i ≤ k from [18, Proposition 2.4(2)]. By
(i), J∗i ∈ BC(Rop), and then from [13, Corollary 6.3] and Proposition 2.7, we
deduce that N∗ ∈ BC(Rop) if and only if N ∈ AC(R). �

3. Modules with C-fpn-injective and C-fpn-flat dimensions

First, we have the following definition under a (faithfully) semidualizing
bimodule C = SCR.

Definition 3.1. An R-module M is C-fpn-injective if M = HomS(C,X) for
some X ∈ fpnI(S). An S-module N is C-fpn-flat if N = C ⊗R Y for some
Y ∈ fpnF (R). We set

CfpnI(R) = {HomS(C,X) : X ∈ fpnI(S)}
and

CfpnF (S) = {C ⊗R Y : Y ∈ fpnF (R)}.

Remark 3.2. (i) FInC(R) ⊆ CfpmI(R) (resp. FFnC(S) ⊆ CfpmF (S))
for any m ≥ n (see [2, Proposition 1.7(1)]). But not conversely, see
(Example 3.3);

(ii) CfpnI(R) ⊆ CfpmI(R) (resp. CfpnF (S) ⊆ CfpmF (S)) for any m ≥
n, and so we have

Cfp1I(R) ⊆ Cfp2I(R) ⊆ · · · ⊆ CfpnI(R) ⊆ Cfpn+1I(R) ⊆ · · ·
and

Cfp1F (S) ⊆ Cfp2F (S) ⊆ · · · ⊆ CfpnF (S) ⊆ Cfpn+1F (S) ⊆ · · · ;

(iii) M ∈ Cfp∞I(R) (resp. Cfp∞F (S)) if and only if M ∈ WIC(R) (resp.
WFC(S)).

Recall that a ring R is said to be an (n, 0)-ring or n-regular ring when every
R-module in FPn(R) is projective (see [15,24]).

Example 3.3. Suppose that K is a field, E is a K-vector space with infinite
rank, and A is a Noetherian ring of global dimension 0. Suppose also that B =
K nE is the trivial extension of K by E and R = A×B is the direct product
of A and B. By [15, Theorem 3.4(3)], R is a (2, 0)-ring which is not a (1, 0)-
ring. Thus, for every M in Mod R and every L ∈ FP2(R), Ext1R(L,M) = 0

(resp. TorR1 (L,M) = 0). Hence M ∈ FP2-Inj(R) (resp. FP2-Flat(R)), and
so M ∈ fp2I(R) (resp. fp2F (R)). On the other hand, there is an R-module
which is not in FP1-Inj(R) (resp. FP1-Flat(R)), since if every R-module is in
FP1-Inj(R) (resp. FP1-Flat(R)), [24, Theorem 3.9] implies that R is a (1, 0)-
ring, which is a contradiction. Therefore, if C = R = S, then every R-module
is in Cfp2I(R) and Cfp2F (R), and there exists an R-module which is not in
FI1C(R) (resp. FF1

C(R)).
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Definition 3.4. Let C = SCR be a faithfully semidualizing bimodule. The C-
fpn-injective dimension of an R-module M is defined such that Cfpn.idR(M) ≤
k when there is an exact sequence

0 −→M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0

in Mod R, where Ii ∈ CfpnI(R) for all 0 ≤ i ≤ k. Also, the C-fpn-flat
dimension of an S-module N is defined such that Cfpn.fdS(N) ≤ k when there
is an exact sequence

0 −→ Jk −→ Jk−1 −→ · · · −→ J1 −→ J0 −→ N −→ 0

in Mod S, where where Ji ∈ CfpnF (S) for all 0 ≤ i ≤ k. Set Cfpn.idS(M) =
∞ (resp. Cfpn.fdR(N) =∞) if no such k exists.

Cfpn.idR(M) ≤ 0 if and only if M ∈ CfpnI(R), and Cfpn.fdS(N) ≤ 0 if
and only if N ∈ CfpnF (S).

The finitely presented dimension of anR-moduleA is defined as f.p.dimR(A) =
inf{n | there is an exact sequence Pn+1 → Pn → · · · → P1 → P0 → A → 0
in Mod R, where Pi is projective for all 0 ≤ i ≤ n + 1, and Pn, Pn+1 ∈
FP0(R)}. So f.p.dim(R) = sup{f.p.dimR(A) | A ∈ FP0(R)}. w.gl.dim(R)
and gl.dim(R) are the weak global dimension and global dimension of a ring R,
respectively. Also, a ringR is said to be an (a, b, c)-ring, whenever w.gl.dim(R) =
a, gl.dim(R) = b and f.p.dim(R) = c (see [16]).

Example 3.5. Let R1 = k[[x1, x2, x3, x4]] be the ring of power series in 4 inde-
terminates over a field k and that R2 is a valuation ring with global dimension
4.

(i) From [1, Example 2.2], R = R1 ⊕R2 is (4, 4, 5)-ring and coherent. So,
w.gl.dim(R) = gl.dim(R) = 4, and then for every M in Mod R, we have
0 −→M −→ I0 −→ I1 −→ I2 −→ I3 −→ D −→ 0, where Ii ∈ fpnI(R)
and injective for all 0 ≤ i ≤ 3. One easily gets that D ∈ fpnI(R).
Therefore if C = R = S, we deduce that Cfpn.idR(M) ≤ 4. Similarly,
it follows that Cfpn.fdR(M) ≤ 4;

(ii) From (i), f.p.dim(R) = 5, and hence there is U ∈ FP0(R) such that
f.p.dimR(U) = 5. Thus, we have a projective resolution of U

P6 −→ P5 −→ P4 −→ P3 −→ P2 −→ P1 −→ P0 −→ U −→ 0,

where P5, P6 ∈ FP0(R). Also, since R is coherent, it follows that
K4 := Im(P5 → P4) is Y-finitely presented.

• Up to the end of the section, C is a faithfully semidualizing bimodule.

Lemma 3.6. The following assertions are true.

(i) CfpnI(R)≤k ⊆ AC(R);
(ii) CfpnF (S)≤k ⊆ BC(S).
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Proof. (i). Let N ∈ CfpnI(R). Then N = HomS(C,X) for some X ∈
fpnI(S). By Lemma 2.9(i), X ∈ BC(S) and so N ∈ AC(R) from [11, Lemma
2.9(1)]. Now, if M ∈ CfpnI(R)≤k, then we have

0 −→M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0,

where each Ii ∈ CfpnI(R) and each Ii ∈ AC(R) for all 0 ≤ i ≤ k. Hence
by [13, Corollary 6.3], M ∈ AC(R).

(ii). The proof is similar to the first part. �

In the following, we investigate Foxby equivalence relative to the classes
CfpnI(R) and CfpnF (S) as a generalization of Foxby equivalence relative to
the classes FInC(R) and FFnC(S) in [19].

Proposition 3.7. We have the following equivalences:

(i) CfpnI(R)≤k
C⊗R−
∼

//
fpnI(S)≤k

HomS(C,−)
oo ;

(ii) fpnF (R)≤k
C⊗R−
∼

//
CfpnF (S)≤k

HomS(C,−)
oo .

Proof. (i). Assume that M ∈ CfpnI(R)≤k. Then, we have

0 −→M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0,

where Ii ∈ CfpnI(R) for all 0 ≤ i ≤ k. Thus, Ii = HomS(C,X) for some
X ∈ fpnI(S). By Lemma 2.9(i), X ∈ BC(S), and then C⊗RHomS(C,X) ∼= X.
So C ⊗R Ii ∈ fpnI(S) and also from Lemma 3.6(i), Ii ∈ AC(R), and so

TorRj (C, Ii) = 0 for all j ≥ 1. By Lemma 3.6(i), M ∈ AC(R) and hence

TorRj (C,M) = 0 for all j ≥ 1. Therefore, we obtain

0 −→ C⊗RM −→ C⊗RI0 −→ C⊗RI1 −→ · · · −→ C⊗RIk−1 −→ C⊗RIk −→ 0,

which shows that C ⊗R M ∈ fpnI(S)≤k. Now, assume that N ∈ fpnI(S)≤k.
Then we have

0 −→ N −→ I ′0 −→ I ′1 −→ · · · −→ I ′k−1 −→ I ′k −→ 0,

where I ′i ∈ fpnI(S) for all 0 ≤ i ≤ k. For all 0 ≤ i ≤ k, from Lemma 2.9(i),

I ′i ∈ BC(S), and so ExtjS(C, I ′i) = 0 for all j ≥ 1. Also, by Lemma 2.9(i),

N ∈ BC(S) and hence ExtjS(C,N) = 0 for all j ≥ 1. Therefore, we obtain the
exact sequence

0→ HomS(C,N)→ HomS(C, I ′0)→ · · · → HomS(C, I ′k−1)→ HomS(C, I ′k)→ 0

in Mod R which shows that HomS(C,N) ∈ CfpnI(R)≤k. Note that, if M ∈
CfpnI(R)≤k, then from Lemma 3.6(i), M ∈ AC(R), and if N ∈ fpnI(S)≤k,
then by Lemma 2.9(i), N ∈ BC(S). Hence we have the natural isomorphisms
M ∼= HomS(C,C ⊗RM) and C ⊗R HomS(C,N) ∼= N .

(ii). The proof is similar to the first part. �
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Corollary 3.8. We have the following equivalences:

(i) CfpnI(R)
C⊗R−
∼

//
fpnI(S);

HomS(C,−)
oo

(ii) fpnF (R)
C⊗R−
∼

//
CfpnF (S).

HomS(C,−)
oo

Proof. Put k = 0 in Proposition 3.7. �

By using Lemma 3.6, Proposition 3.7, and Corollary 3.8, we get the first
main result of this section.

Theorem 3.9. (Foxby Equivalence) We have the following equivalences:

fpnF (R)
C⊗R−
∼

//
� _

��

CfpnF (S)
HomS(C,−)

oo � _

��
fpnF (R)≤k

C⊗R−
∼

//
� _

��

CfpnF (S)≤k
HomS(C,−)

oo � _

��
AC(R)

C⊗R−
∼

// BC(S)
HomS(C,−)

oo

CfpnI(R)≤k
C⊗R−
∼

//?�

OO

fpnI(S)≤k
HomS(C,−)

oo
?�

OO

CfpnI(R)
C⊗R−
∼

//?�

OO

fpnI(S).
HomS(C,−)

oo
?�

OO

Corollary 3.10. Let M be in Mod R and N be in Mod S. Then the following
assertions are true.

(i) M ∈ CfpnI(R)≤k if and only if M ∈ AC(R) and C⊗RM ∈ fpnI(S)≤k;
(ii) N ∈ CfpnF (S)≤k if and only if N ∈ BC(S) and HomS(C,N) ∈

fpnF (R)≤k.

Proof. (i). (⇒) This follows from Lemma 3.6(i) and Theorem 3.9.
(⇐) If M ∈ AC(R) and C ⊗R M ∈ fpnI(S)≤k, then M ∼= HomS(C,C ⊗R

M) and, by Theorem 3.9, HomS(C,C ⊗R M) ∈ CfpnI(R)≤k. Thus M ∈
CfpnI(R)≤k.

(ii). The proof is similar to the first part. �

Corollary 3.11. Let X be in Mod S and Y be in Mod R. Then the following
assertions are true.

(i) HomS(C,X) ∈ CfpnI(R)≤k if and only if X ∈ fpnI(S)≤k;
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(ii) C ⊗R Y ∈ CfpnF (S)≤k if and only if Y ∈ fpnF (R)≤k.

Proof. (i). Assume that HomS(C,X) ∈ CfpnI(R)≤k. Then, by Corollary
3.10(i), HomS(C,X) ∈ AC(R). Thus, from [11, Lemma 2.9(1)], X ∈ BC(S)
and hence C ⊗R HomS(C,X) ∼= X. Therefore X ∈ fpnI(S)≤k by Theorem
3.9.

(ii). The proof is similar to the first part. �

We denote the character module of M by M∗ := HomZ(M,Q/Z) [17, Page
135].

Proposition 3.12. Suppose that M is in Mod R and N is Mod S. Then the
following assertions are true.

(i) M ∈ CfpnI(R)≤k if and only if M∗ ∈ CfpnF (Rop)≤k;
(ii) N ∈ CfpnF (S)≤k if and only if N∗ ∈ CfpnI(Sop)≤k.

Proof. (i). We argue by induction on k. Assume that k = 0. (⇒). Assume that
M ∈ CfpnI(R). Then M = HomS(C,X) for some X ∈ fpnI(S). From [18,
Proposition 2.4(1)], X∗ ∈ fpnF (Sop). Thus M∗ ∈ CfpnF (Rop) because M∗ =
HomS(C,X)∗ ∼= C ⊗Sop X∗ by [17, Lemma 3.55 and Proposition 2.56]. (⇐)
Now, assume that M∗ ∈ CfpnF (Rop). Then, from Corollary 3.10(ii), M∗ ∈
BC(Rop) and HomRop(C,M∗) ∈ fpnF (Sop). Also, by [17, Proposition 2.56 and
Theorem 2.76], (C⊗RM)∗ ∼= HomRop(C,M∗) and so C⊗RM ∈ fpnI(S) from
[18, Proposition 2.4(1)]. Since M∗ ∈ BC(Rop), M∗ ∼= C⊗Sop HomRop(C,M∗) ∼=
C⊗Sop (C⊗RM)∗ ∼= HomS(C,C⊗RM)∗ from [17, Proposition 2.56, Theorem
2.76, and Lemma 3.55]. Hence M ∼= HomS(C,C ⊗RM) by [17, Lemma 3.53].
Thus M ∈ CfpnI(R).

Suppose that k > 0 and that k−1 is settled. Assume that M ∈ CfpnI(R)≤k.
Then we have the exact sequence

0 −→M −→ I −→ L −→ 0,

where I ∈ CfpnI(R) and L ∈ CfpnI(R)≤k−1. Since I∗ ∈ CfpnF (Rop), and
by [17, Lemma 3.53],

0 −→ L∗ −→ I∗ −→M∗ −→ 0

is an exact sequence in Mod Rop, we deduce that M ∈ CfpnI(R)≤k if and
only if L ∈ CfpnI(R)≤k−1 if and only if L∗ ∈ CfpnF (Rop)≤k−1 if and only if
M∗ ∈ CfpnF (Rop)≤k.

(ii). The proof is similar to the first part. �

Corollary 3.13. Suppose that M is Mod R and N is Mod S. Then the fol-
lowing assertions are true.

(i) M ∈ CfpnI(R)≤k if and only if M∗∗ ∈ CfpnI(R)≤k;
(ii) N ∈ CfpnF (S)≤k if and only if N∗∗ ∈ CfpnF (S)≤k.

Proof. This is followed by Proposition 3.12. �

Proposition 3.14. The following assertions are true.



426 M. Amini, A. Vahidi, F. Rezaei

(i) The class CfpnI(R)≤k is closed under direct summands, direct prod-
ucts, and direct sums;

(ii) The class CfpnF (S)≤k is closed under direct summands, direct prod-
ucts, and direct sums.

Proof. (i). Assume that M ∈ CfpnI(R)≤k and M ′ is a direct summand of
M . Then, by Corollary 3.10(i), M ∈ AC(R) and C ⊗R M ∈ fpnI(S)≤k, and
also there is M ′′ in Mod R such that M ∼= M ′ ⊕M ′′. From [13, Proposition
4.2(a)], it follows that M ′ ∈ AC(R). Also, by [17, Theorem 2.65], we have
C ⊗RM ∼= (C ⊗RM ′)⊕ (C ⊗RM ′′) which shows from [18, Proposition 2.3(1)]
that C ⊗RM ′ ∈ fpnI(S)≤k. Thus M ′ ∈ CfpnI(R)≤k by Corollary 3.10(i).
Now, assume that {Mj}j∈J is a family in CfpnI(R)≤k. Then, by Corollary
3.10(i), Mj ∈ AC(R) and C⊗RMj ∈ fpnI(S)≤k for all j ∈ J . Hence, from [13,
Proposition 4.2(a)],

∏
j∈JMj ∈ AC(R) (resp.

⊕
j∈JMj ∈ AC(R)). Also, we

have

0 −→ C ⊗RMj −→ I0j −→ I1j −→ · · · −→ Ik−1j −→ Ikj −→ 0,

where Iij ∈ fpnI(S) for all 0 ≤ i ≤ k. So

0 −→
∏
j∈J

(C ⊗RMj) −→
∏
j∈J

I0j −→ · · · −→
∏
j∈J

Ik−1j −→
∏
j∈J

Ikj −→ 0

is an exact sequence, where by [18, Proposition 2.3(1)],
∏
j∈J Iij ∈ fpnI(S) for

all 0 ≤ i ≤ k, and so
∏
j∈J(C ⊗R Mj) ∈ fpnI(S)≤k. Similarly,

⊕
j∈J(C ⊗R

Mj) ∈ fpnI(S)≤k. Since C ∈ FP1(R), from [4, Lemma 2.10(2)] we have
C ⊗R (

∏
j∈JMj) ∼=

∏
j∈J(C ⊗RMj), and then C ⊗R (

∏
j∈JMj) ∈ fpnI(S)≤k.

Also, C ⊗R (
⊕

j∈JMj) ∈ fpnI(S) by [17, Theorem 2.65]. Thus
∏
j∈JMj ∈

CfpnI(R)≤k (resp.
⊕

j∈JMj ∈ CfpnI(R)≤k) by Corollary 3.10(i).

(ii). By using [17, Theorem 2.30 and Corollary 2.32] and [4, Lemma 2.9],
the proof is similar to the first part. �

Suppose that F is a class of R-modules and thatM is in Mod R. A morphism
f : F −→ M (resp. f : M −→ F ) with F ∈ F is said to be an F-precover
(resp. F-preenvelope) of M when HomR(F ′, F ) −→ HomR(F ′,M) −→ 0 (resp.
HomR(F, F ′) −→ HomR(M,F ′) −→ 0) is exact for all F ′ ∈ F . Assume that
f : F −→ M (resp. f : M −→ F ) is an F-precover (resp. F-preenvelope) of
M . Then f is said to be an F-cover (resp. F-envelope) of M whenever every
morphism g : F −→ F such that fg = f (resp. gf = f) is an isomorphism. The
class F is said to be (pre)covering (resp. (pre)enveloping) if each R-module has
an F-(pre)cover (resp. F-(pre)envelope) (see [6, Definitions 5.1.1 and 6.1.1]).

A duality pair over R is a pair (M,N ), where M is a class of Mod R and
N is a class of Mod Rop, subject to the following conditions:

(i) For M in Mod R, one has M ∈M if and only if M∗ ∈ N ;
(ii) N is closed under direct summands and finite direct sums.
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A duality pair (M,N ) is said to be (co)product-closed whenM is closed under
(co)products in the category of all R-modules (see [12, Definition 2.1]).

Corollary 3.15. (CfpnI(R)≤k, CfpnF (Rop)≤k) and (CfpnF (S)≤k, CfpnI(Sop)≤k)
are duality pairs.

Proof. From Proposition 3.12, M ∈ CfpnI(R)≤k (resp. CfpnF (S)≤k) if and
only if M∗ ∈ CfpnF (Rop)≤k) (resp. CfpnI(Sop)≤k). Also, by Proposition
3.14, CfpnF (Rop)≤k (resp. CfpnI(Sop)≤k) is closed under direct summands
and direct sums. Thus the assertions follow. �

We say that Y ≤ X is a pure R-submodule of X, X/Y is a pure quotient of
X, and X is a pure extension of Y and X/Y if

0 −→ A⊗R Y −→ A⊗R X −→ A⊗R X/Y −→ 0

is an exact sequence for every A in Mod Rop, equivalently, if

0 −→ HomR(B, Y ) −→ HomR(B,X) −→ HomR(B,X/Y ) −→ 0

is an exact sequence for every B ∈ FP1(R) [6, Definition 5.3.6].
The next corollary shows that CfpnI(R) and CfpnF (S) are also closed

under pure submodules, pure quotients, and pure extensions.

Corollary 3.16. Suppose that Y ≤ X is a pure R-submodule (resp. S-
submodule) of X. Then the following assertions are true.

(i) X ∈ CfpnI(R) if and only if Y ∈ CfpnI(R) and X/Y ∈ CfpnI(R);
(ii) X ∈ CfpnF (S) if and only if Y ∈ CfpnF (S) and X/Y ∈ CfpnF (S).

Proof. The assertion is followed by Corollary 3.15 and [12, Theorem 3.1]. �

In the second main result of this section, by the use of duality pairs, we show
that CfpnI(R)≤k and CfpnF (S)≤k are preenveloping and covering.

Theorem 3.17. The classes CfpnI(R)≤k and CfpnF (S)≤k are preenveloping
and covering.

Proof. By Corollary 3.15, it is clear that (CfpnI(R)≤k, CfpnF (Rop)≤k) and
(CfpnF (S)≤k, CfpnI(Sop)≤k) are duality pairs. Also, from Proposition 3.14,
the classes CfpnI(R)≤k and CfpnF (S)≤k are closed under direct products and
direct sums. Therefore, from [12, Theorem 3.1], the classes CfpnI(R)≤k and
CfpnF (S)≤k are preenveloping and covering. �

4. C-fpn-injective and C-fpn-flat dimension of modules with
respect to change of rings

In this section, we consider, R = S and we assume that S
′ ≥ R is a unitary

ring extension. The ring S
′

is said to be right R-projective, [21, 23] in case,

for any MS′ in Mod S
′

with an NS′ in Mod S
′
, NR | MR implies NS′ | MS′ ,

where N | M means N is a direct summand of M . S
′

is said to be a finite

normalizing extension of R when there are elements a1, · · · , an ∈ S
′

such that
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a1 = 1, S
′

= Ra1 + · · · + Ran. A finite normalizing extension S
′ ≥ R is said

to be an almost excellent extension in case RS
′

is flat, S
′

R is projective, and

the ring S
′

is right R-projective. An almost excellent extension S
′ ≥ R is an

excellent extension in case both RS
′

and S
′

R are free modules with a common
basis {a1, · · · , an}.

In this section, we investigate modules of CfpnI(R)≤k and also, modules
of CfpnF (R)≤k under an almost excellent extension of rings, where C is a

faithfully semidualizing R-module. Throughout this section, S
′ ≥ R is an

almost excellent extension.

Lemma 4.1. The following assertions are true.

(i) If X ∈ fpnI(R)≤k, then HomR(S
′
, X) ∈ fpnI(S

′
)≤k;

(ii) If X ∈ fpnF (R)≤k, then (S
′ ⊗R X) ∈ fpnF (S

′
)≤k.

Proof. (i). Consider, the exact sequence 0 −→ K1 −→ K2, where K1,K2 ∈
FPn(S

′
). By [20, Theorem 5], K1,K2 ∈ FPn(R). If k = 0, then X ∈ fpnI(R).

We prove that HomR(S
′
, X) ∈ fpnI(S

′
). We have the commutative diagram

HomS′ (K2,HomR(S
′
, X)) //

∼=
��

HomS′ (K1,HomR(S
′
, X))

∼=
��

HomR(K2, X) // HomR(K1, X) // 0,

and so, the sequence

HomS′ (K2,HomR(S
′
, X)) −→ HomS′ (K1,HomR(S

′
, X)) −→ 0

is exact and hence HomR(S
′
, X) ∈ fpnI(S

′
).

Now, let X ∈ fpnI(R)≤k. Then we have

0 −→ X −→ X0 −→ X1 −→ · · · −→ Xk −→ 0,

where Xi ∈ fpnI(R) for all 0 ≤ i ≤ k. Since S
′

R is projective, there is an exact
sequence

0 −→ HomR(S
′
, X) −→ HomR(S

′
, X0) −→ · · · −→ HomR(S

′
, Xk) −→ 0

in Mod S
′
, where HomR(S

′
, Xi) ∈ fpnI(S

′
) for all 0 ≤ i ≤ k. So, it follows

that HomR(S
′
, X) ∈ fpnI(S

′
)≤k.

(ii). By Definition 2.8 and [18, Proposition 2.4(1)], it follows that for Y
in Mod R, Y ∈ fpnI(R)≤k if and only if Y ∗ ∈ fpnF (Rop)≤k and Y ∈
fpnF (R)≤k if and only if Y ∗ ∈ fpnI(Rop)≤k. Thus if X ∈ fpnF (R)≤k, then
X∗ ∈ fpnI(Rop)≤k. Hence by (i) and [17, Proposition 2.56 and Theorem 2.76],

(S
′ ⊗R X)∗ ∼= HomR(S

′
, X∗) ∈ fpnI(S

′op
)≤k, and therefore (S

′ ⊗R X) ∈
fpnF (S

′
)≤k. �

Lemma 4.2. Suppose that C is a (faithfully) semidualizing in Mod R. Then

C ⊗R S
′

is a faithfully semidualizing S-module.
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Proof. By [5, Lemma 3.4], C⊗R S
′

is a semidualizing in Mod S
′
. Assume that

HomS′ (C ⊗R S
′
, N) = 0 for a N in Mod S

′
. Then 0 = HomS′ (C ⊗R S

′
, N) ∼=

HomR(C,HomS′ (S
′
, N)) ∼= HomR(C,N), and so N = 0. �

Proposition 4.3. The following assertions are true.

(i) If M ∈ CfpnI(R)≤k, then HomR(S
′
,M) ∈ (C ⊗R S

′
)fpnI(S

′
)≤k;

(ii) If M ∈ CfpnF (R)≤k, then (S
′ ⊗RM) ∈ (C ⊗R S

′
)fpnF (S

′
)≤k.

Proof. (i). Assume that M ∈ CfpnI(R)≤k. If k = 0, then M = HomR(C,X)
for some X ∈ fpnI(R). We have

HomR(S
′
,M) ∼= HomR(S

′
,HomR(C,X))

∼= HomR(C ⊗R S
′
, X)

∼= HomR(C ⊗R S
′ ⊗S′ S

′
, X)

∼= HomS′ (C ⊗R S
′
,Hom(S

′
, X)).

Since by Lemma 4.1, HomR(S
′
, X) ∈ fpnI(S

′
) and by Lemma 4.2, C ⊗R S

′

is semidualizing S
′
-module, we deduce that HomS′ (C ⊗R S

′
,Hom(S

′
, X)) ∈

(C ⊗R S
′
)fpnI(S

′
). Therefore HomR(S

′
,M) ∈ (C ⊗R S

′
)fpnI(S

′
). Also, if

M ∈ CfpnI(R)≤k, it simply follows that HomR(S
′
,M) ∈ (C⊗RS

′
)fpnI(S

′
)≤k.

(ii). The proof is similar to the first part. �

In the following, we give equivalent conditions for modules of CfpnI(R)≤k
and also, modules of CfpnF (R)≤k under almost excellent extension of rings.

Proposition 4.4. Suppose that M is in Mod S
′
. Then the following assertions

are equivalent:

(i) M ∈ CfpnI(R)≤k;

(ii) HomR(S
′
,M) ∈ (C ⊗R S

′
)fpnI(S

′
)≤k;

(iii) M ∈ (C ⊗R S
′
)fpnI(S

′
)≤k.

Proof. (i)⇒(ii). This follows from Proposition 4.3(i).
(ii)⇒(iii). By [21, Lemma 1.1], S′M is isomorphic to a direct summand of

S
′
-module HomR(S

′
,M). Then by (2) and Proposition 3.14(i), M ∈ (C ⊗R

S
′
)fpnI(S

′
)≤k.

(iii)⇒ (i). Assume that k = 0. Then M ∈ (C ⊗R S
′
)fpnI(S

′
), and so

M = HomS′ (C⊗R S
′
, X) for some X ∈ fpnI(S

′
). We have M = HomS′ (C⊗R

S
′
, X) ∼= HomR(C,HomS′ (S

′
, X)) ∼= HomR(C,X). We show thatX ∈ fpnI(R).

Assume that 0 −→ K1 −→ K2 is an exact sequence in Mod R, where K1,K2 ∈
FPn(R). Since S

′
is a flatR-module, we have that 0 −→ K1⊗RS

′ −→ K2⊗RS
′

is an exact sequence in Mod S
′
, where K1 ⊗R S

′
,K1 ⊗R S

′ ∈ FPn(S
′
) by [20,
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Lemma 4]. We have the commutative diagram

HomS′ (K2 ⊗R S
′
, X) //

∼=
��

HomS′ (K1 ⊗R S
′
, X) //

∼=
��

0

HomR(K2, X) // HomR(K1, X).

So, the sequence HomR(K2, X) −→ HomR(K1, X) −→ 0 is exact, and then
X ∈ fpnI(R). Therefore, we get M ∈ CfpnI(R). Also, if M ∈ (C ⊗R
S
′
)fpnI(S

′
)≤k, it simply follows that M ∈ CfpnI(R)≤k. �

Proposition 4.5. Suppose that M is Mod S
′
. Then the following assertions

are equivalent:

(i) M ∈ CfpnF (R)≤k;

(ii) (S
′ ⊗RM) ∈ (C ⊗R S

′
)fpnF (S

′
)≤k;

(iii) M ∈ (C ⊗R S
′
)fpnF (S

′
)≤k.

Proof. By Propositions 4.4 and 3.12 and [17, Proposition 2.56 and Theorem
2.76], M ∈ CfpnF (R)≤k if and only if M∗ ∈ CfpnI(Rop)≤k if and only if

HomR(S
′
,M∗) ∈ (C ⊗R S

′
)fpnI(S

′op
)≤k if and only if (S

′ ⊗R M)∗ ∈ (C ⊗R
S
′
)fpnI(S

′op
)≤k if and only if (S

′ ⊗R M) ∈ (C ⊗R S
′
)fpnF (S

′
)≤k. Also,

M ∈ CfpnF (R)≤k if and only if M∗ ∈ CfpnI(Rop)≤k if and only if M∗ ∈
(C ⊗R S

′
)fpnI(S

′op
)≤k if and only if M ∈ (C ⊗R S

′
)fpnF (S

′
)≤k. �

Corollary 4.6. Suppose that R is an n-coherent ring. Then the following
assertions are true.

(i) The class (C⊗RS
′
)fpnI(S

′
)≤k is closed under extensions and cokernels

of monomorphisms;
(ii) The class (C⊗RS

′
)fpnF (S

′
)≤k is closed under extensions and kernels

of epimorphisms.

Proof. (i). Consider, the exact sequence 0 −→ A −→ B −→ C −→ 0 in Mod

S
′
, where A,C ∈ (C ⊗R S

′
)fpnI(S

′
)≤k. Then by Proposition 4.4, A,C ∈

CfpnI(R)≤k. So by Remark 3.2(ii) and [19, Theorem 4.9], B ∈ CfpnI(R)≤k,

and then B ∈ (C ⊗R S
′
)fpnI(S

′
)≤k from Proposition 4.4. Similarly, if B,C ∈

(C ⊗R S
′
)fpnI(S

′
)≤k, then A ∈ (C ⊗R S

′
)fpnI(S

′
)≤k.

(ii). The proof is similar to the first part by using Proposition 4.5 and [19,
Theorem 4.8]. �

Theorem 4.7. The class (C ⊗R S
′
)fpnI(S

′
)≤k is preenveloping and precov-

ering.

Proof. Assume thatM is in Mod S
′
. We show thatM has a (C⊗RS

′
)fpnI(S

′
)≤k-

preenvelope. Since M is Mod R, then by Theorem 3.17, M has a CfpnI(R)≤k-
preenvelope. Assume that R-homomorphism α : M −→ N is a CfpnI(R)≤k-

preenvelope ofM . So by Proposition 4.3(1), HomR(S
′
, N) ∈ (C⊗RS

′
)fpnI(S

′
)≤k.
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We prove that α∗λM : M −→ HomR(S
′
, N) is a (C⊗RS

′
)fpnI(S

′
)≤k-preenvelope

of S
′
-module M , where λM : M −→ HomR(S

′
,M) and α∗ : HomR(S

′
,M) −→

HomR(S
′
, N). If L ∈ (C ⊗R S

′
)fpnI(S

′
)≤k, and β : M −→ L is an S

′
-

homomorphism, then by Proposition 4.4, L ∈ CfpnI(R)≤k, and so there is
an R-homomorphism γ : N −→ L such that β = γα. Thus, we have the
following commutative diagram:

S′M

β

��

λM //
HomR(S

′
,M)

πM

oo
α∗ //

β∗
��

HomR(S
′
, N)

1

��

S′L
λL //

HomR(S
′
, L)

πL

oo HomR(S
′
, N)

γ∗
oo .

So, we have (πLγ∗)(α∗λM ) = πL(γ∗α∗)λM = πL(γα)∗λM = πL(β)∗λM =

πLλLβ = β. Therefore, we get that every S
′
-moduleM has a (C⊗RS

′
)fpnI(S

′
)≤k-

preenvelope. Similarly, (C ⊗R S
′
)fpnI(S

′
)≤k is precovering. �

Theorem 4.8. The class (C ⊗R S
′
)fpnF (S

′
)≤k is preenveloping and precov-

ering.

Proof. Assume thatM is in Mod S
′
. We prove thatM has a (C⊗RS

′
)fpnF (S

′
)≤k-

preenvelope. SinceM is in ModR, then by Theorem 3.17, M has a CfpnF (R)≤k-
preenvelope. Assume that R-homomorphism α : M −→ N is a CfpnF (R)≤k-

preenvelope ofM . Then by Proposition 4.3(2), (S
′⊗RN) ∈ (C⊗RS

′
)fpnF (S

′
)≤k.

We show that (S
′ ⊗R α)lM : M −→ S

′ ⊗R N is a (C ⊗R S
′
)fpnF (S

′
)≤k-

preenvelope of S
′
-module M , where lM : M −→ (S

′ ⊗R M) and S
′ ⊗R α :

S
′ ⊗R M −→ S

′ ⊗R N. If L ∈ (C ⊗R S
′
)fpnF (S

′
)≤k and β : M −→ L is an

S
′
-homomorphism, then by Proposition 4.5, L ∈ CfpnF (R)≤k, and so there

is an R-homomorphism γ : N −→ L such that β = γα. Thus, we have the
following commutative diagram:

S′M

β

��

lM //
S
′ ⊗RM

τM
oo

S
′
⊗Rα //

S
′
⊗Rβ

��

S
′ ⊗R N

1

��

S′L
lL //

S
′ ⊗R L

τL
oo S

′ ⊗R N
S
′
⊗Rγ

oo .

Thus, we have τL(S
′ ⊗R γ)(S

′ ⊗R α)lM = τL(S
′ ⊗R γα)lM = τLlLβ = β, and

so every S
′
-module M has a (C ⊗R S

′
)fpnF (S

′
)≤k-preenvelope. Similarly,

(C ⊗R S
′
)fpnF (S

′
)≤k is precovering. �

Corollary 4.9. The following assertions are equivalent:

(i) Every S
′
-module has a monic (C ⊗R S

′
)fpnI(S

′
)≤k-cover;

(ii) Every S
′op

-module has an epic (C ⊗R S
′
)fpnF (S

′op
)≤k-preenvelope;
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(iii) Every quotient in (C ⊗R S
′
)fpnI(S

′
)≤k is in (C ⊗R S

′
)fpnI(S

′
)≤k;

(iv) Every submodule of (C⊗RS
′
)fpnF (S

′op
)≤k is in (C⊗RS

′
)fpnF (S

′op
)≤k.

Moreover, if R is an n-coherent ring, then the above conditions are also equiv-
alent to:

(v) The kernel of any CfpnI(R)≤k-precover of any R-module is in CfpnI(R)≤k;
(vi) The cokernel of any CfpnF (Rop)≤k-preenvelope of any Rop-module is

in CfpnF (Rop)≤k.

Proof. (i)⇔(iii). We first prove that (C⊗RS
′
)fpnI(S

′
)≤k is closed under direct

sums. Assume that {Mj}j∈J is a family in Mod S
′

such that every Mj ∈
(C ⊗R S

′
)fpnI(S

′
)≤k. Then by Proposition 4.4, Mj ∈ CfpnI(R)≤k, and then

by Proposition 3.14(i),
⊕

j∈JMj ∈ CfpnI(R)≤k, and hence by Proposition

4.4,
⊕

j∈JMj ∈ (C⊗R S
′
)fpnI(S

′
)≤k. Therefore [7, Proposition 4] shows that

(i) and (iii) are equivalent.
(ii)⇔(iv). The proof is similar to that of (i)⇔(iii) by using Propositions

3.14(ii), 4.5 and [3, Theorem 2].

(iii)⇒(iv). Assume that N ∈ (C⊗RS
′
)fpnF (S

′op
)≤k and N

′
is a submodule

of N . From the short exact sequence

0 −→ N
′
−→ N −→ N/N

′
−→ 0,

we get the short exact sequence

0 −→ (N/N
′
)∗ −→ N∗ −→ N

′∗
−→ 0.

By Propositions 4.5 and 3.12(ii), N ∈ CfpnF (Rop)≤k if and only if N∗ ∈
CfpnI(R)≤k if and only if N∗ ∈ (C ⊗R S

′
)fpnI(S

′
)≤k. Then by (iii) and

Proposition 4.4, N
′∗ ∈ (C⊗RS

′
)fpnI(S

′
)≤k if and only if N

′∗ ∈ CfpnI(R)≤k,
and consequently by Propositions 3.12(i) and 4.5 , N ′ ∈ CfpnF (Rop)≤k if and

only if N
′ ∈ (C ⊗R S

′
)fpnF (S

′op
)≤k. Similarly, (iv)⇒(iii) is also proved.

(i)⇒(v). Assume that M is in Mod S
′

and that, by Theorem 4.7, f : F −→
M is a (C ⊗R S

′
)fpnI(S

′
)≤k-precover of M . Assume also that g : E −→M is

a monic (C⊗R S
′
)fpnI(S

′
)≤k-cover of M . Then [6, Lemma 8.6.3] implies that

Ker(f)⊕E ∼= F . By Proposition 4.4, F ∈ CfpnI(R)≤k, and so by Proposition
3.14(i), Ker(f) ∈ CfpnI(R)≤k.

(ii)⇒(vi). The proof is similar to that of (i)⇒(v) by using the dual of [6,
Lemma 8.6.3].

(vi)⇒(iv). Assume that N ∈ (C ⊗R S
′
)fpnF (S

′op
)≤k and that N

′
is a

submodule of N . Assume also that, by Theorem 4.8, f : N
′ −→ F is a (C ⊗R

S
′
)fpnF (S

′op
)≤k-preenvelope of N

′
. Then we have the following commutative



C-fpn-injective and C-fpn-flat modules – JMMR Vol. 14, No. 1 (2025) 433

diagram

N
′ f // F

��

// Coker(f) // 0

0 // N
′ // N

with exact rows. In particular, the sequence

0 −→ N
′
−→ F −→ Coker(f) −→ 0

is exact, and then by Remark 3.2(ii) and Corollary 4.6(ii), N ′ ∈ (C⊗RS
′
)fpnF (S

′op
)≤k.

(v)⇒(iii). The proof is similar to that of (vi)⇒(iv) by using Corollary 4.6(i).
�

In the next proposition, we investigate the homological behavior of Auslan-
der and Bass classes under almost excellent extension of rings.

Proposition 4.10. The following assertions are true.

(i) If A ∈ AC(R), then (S
′ ⊗R A) ∈ AC⊗RS

′ (S
′
);

(ii) If B ∈ BC(R), then HomR(S
′
, B) ∈ BC⊗RS

′ (S
′
).

Proof. (i). There exists an exact sequence in Mod R

· · · −→ Pj+1 −→ Pj −→ Pj−1 −→ · · · −→ P1 −→ P0 −→ C −→ 0,

where for all j ≥ 0, Pj ∈ FP0(R) and free . Since A ∈ AC(R), we have the
exact sequence

· · · −→ Pj+1 ⊗R A −→ Pj ⊗R A −→ · · · −→ P0 ⊗R A −→ C ⊗R A −→ 0,

in Mod R and since S
′

is flat R-module, we have the commutative diagram

S
′
⊗R (Pj+1 ⊗R A) //

∼=
��

· · · // S
′
⊗R (C ⊗R A) //

∼=
��

0

(Pj+1 ⊗R S
′
)⊗S

′ (S
′
⊗R A) // · · · // (C ⊗R S

′
)⊗S

′ (S
′
⊗R A) // 0,

and so TorS
′

j (C ⊗R S
′
, S
′ ⊗R A) = 0 for any j ≥ 0.

On the other hand, C⊗RA ∈ BC(R) by [13, Proposition 4.1]. Thus we have

0 −→ HomR(C,C ⊗R A) −→ · · · −→ HomR(Pj+1, C ⊗R A) −→ · · · ,
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and hence by [17, Lemma 4.86], we have the commutative diagram:

0 // S
′
⊗R HomR(C,C ⊗R A) //

∼=
��

· · · // S
′
⊗R HomR(Pj+1, C ⊗R A)

∼=
��

0 // HomR(C, S
′
⊗R (C ⊗R A)) //

∼=
��

· · · // HomR(Pj+1, S
′
⊗R (C ⊗R A))

∼=
��

0 // HomS
′ (C ⊗R S

′
, (C ⊗R S

′
)⊗S

′ (S
′
⊗R A)) // · · · // HomS

′ (Pj+1 ⊗R S
′
, (C ⊗R S

′
)⊗S

′ (S
′
⊗R A)).

Hence Extj
S′

(C ⊗R S
′
, (C ⊗R S

′
)⊗S′ (S

′ ⊗R A)) = 0, and also

S
′
⊗RA ∼= S

′
⊗RHomR(C,C⊗RA) ∼= HomS′ (C⊗RS

′
, (C⊗RS

′
)⊗S′ (S

′
⊗RA)).

Therefore (S
′ ⊗R A) ∈ AC⊗RS

′ (S
′
).

(ii). Assume that B ∈ BC(R). Then by Proposition 2.7(ii), B∗ ∈ AC(Rop).

So (S
′⊗RopB∗) ∈ AC⊗RopS′ (S

′op
) by (i). By [20, Theorem 5], S

′
is in FP1(R),

and so [17, Lemma 3.55] implies that HomRop(S
′
, B)∗ ∈ AC⊗RopS′ (S

′op
). Con-

sider, Y-finitely presented Y = · · · −→ P1 −→ P0 −→ C −→ 0 in Mod R.
Then by Lemma 4.2, Y ⊗R S

′
is a Y ⊗R S

′
-finitely presented, and then similar

to the proof of Proposition 2.7(ii), HomR(S
′
,M) ∈ BC⊗RS

′ (S
′
). �

Corollary 4.11. The following assertions are true.

(i) fpnF (S
′
)≤k ⊆ AC⊗RS

′ (S
′
);

(ii) fpnI(S
′
)≤k ⊆ BC⊗RS

′ (S
′
).

Proof. (i). Assume that M ∈ fpnF (S
′
)≤k. Then we have

0 −→ Jk −→ Jk−1 −→ · · · −→ J1 −→ J0 −→M −→ 0,

where Ji ∈ fpnF (S
′
) for all 0 ≤ i ≤ k. By [18, Proposition 3.2], Ji ∈ fpnF (R).

So we obtain that M ∈ fpnF (R)≤k. Thus by Lemma 2.9(ii), M ∈ AC(R), and

hence by Proposition 4.10(i), (S
′ ⊗R M) ∈ AC⊗RS

′ (S
′
). From [21, Lemma

1.1], we see that S
′
-module M is isomorphic to a direct summand of S

′ ⊗RM .

Therefore [13, Proposition 4.2] implies that M ∈ AC⊗RS
′ (S

′
).

(ii). The proof is similar to the first part. �

Lemma 4.12. The following assertions are true.

(i) (C ⊗R S
′
)fpnI(S

′
)≤k ⊆ AC⊗RS

′ (S
′
);

(ii) (C ⊗R S
′
)fpnF (S

′
)≤k ⊆ BC⊗RS

′ (S
′
).

Proof. (i). Assume that M ∈ (C ⊗R S
′
)fpnI(S

′
)≤k. Then from Proposition

4.4, M ∈ CfpnI(R)≤k, and so M ∈ AC(R) by Lemma 3.6(i). Thus from

Proposition 4.10(i), (S
′ ⊗RM) ∈ AC⊗RS

′ (S
′
). By [21, Lemma 1.1], M is iso-

morphic to a direct summand of S
′⊗RM , and consequently by [13, Proposition

4.2], M ∈ AC⊗RS
′ (S

′
). Similarly, (ii) will be proved. �
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In the following, we investigate Foxby equivalence relative to the class (C⊗R
S
′
)fpnI(S

′
)≤k with the class fpnI(S

′
)≤k and the class (C ⊗R S

′
)fpnF (S

′
)≤k

with the class fpnF (S
′
)≤k, where S

′ ≥ R is an almost excellent extension.

Proposition 4.13. We have the following equivalences:

(i) (C ⊗R S
′
)fpnI(S

′
)≤k

(C⊗RS
′
)⊗

S
′−

∼
//
fpnI(S

′
)≤k;

Hom
S
′ (C⊗RS

′
,−)

oo

(ii) fpnF (S
′
)≤k

(C⊗RS
′
)⊗

S
′−

∼
//
(C ⊗R S

′
)fpnF (S

′
)≤k.

Hom
S
′ (C⊗RS

′
,−)

oo

Proof. (i). Assume that M ∈ (C ⊗R S
′
)fpnI(S

′
)≤k. Then we have

0 −→M −→ I0 −→ I1 −→ · · · −→ Ik−1 −→ Ik −→ 0,

where Ii ∈ (C ⊗R S
′
)fpnI(S

′
) for all 0 ≤ i ≤ k. By Proposition 4.4, each

Ii ∈ CfpnI(R), and so by Proposition 3.7(i) and [18, Proposition 3.2], C⊗RIi ∈
fpnI(R) if and only if C ⊗R Ii ∈ fpnI(S

′
). On the other hand, by Proposition

4.4, M ∈ CfpnI(R)≤k, and then by Lemma 3.6(i), M, Ii ∈ AC(R). Thus, we
have

0 −→ C⊗RM −→ C⊗RI0 −→ C⊗RI1 −→ · · · −→ C⊗RIk−1 −→ C⊗RIk −→ 0,

where C ⊗R Ii ∈ CfpnI(S
′
) for all 0 ≤ i ≤ k, and hence (C ⊗R S

′
) ⊗S′ M ∼=

C ⊗RM ∈ fpnI(S
′
)≤k.

Also, M ∈ AC⊗RS
′ (S

′
) by Lemma 4.12(i). So we have M ∼= HomS′ (C ⊗R

S
′
, (C ⊗R S

′
)⊗S′ M).

Now, assume that N ∈ fpnI(S
′
)≤k. Then we have

0 −→ N −→ X0 −→ X1 −→ · · · −→ Xk−1 −→ Xk −→ 0,

where Xi ∈ fpnI(S
′
) for all 0 ≤ i ≤ k. By [18, Proposition 3.2], Xi ∈ fpnI(R).

ThereforeN ∈ fpnI(R)≤k. Thus by Proposition 3.7(i), HomR(C,N) ∈ CfpnI(R)≤k.

We have HomS′ (C ⊗R S
′
, N) ∼= HomR(C,HomS′ (S

′
, N)) ∼= HomR(C,N).

Hence HomS′ (C ⊗R S
′
, N) ∈ CfpnI(R)≤k, and therefore by Proposition 4.4,

HomS′ (C ⊗R S
′
, N) ∈ (C ⊗R S

′
)fpnI(S

′
)≤k.

(ii). The proof is similar to the first part. �

In the following, we give equivalent conditions with modules of the classes
AC(R) and BC(R) under almost excellent extension of rings.

Proposition 4.14. Suppose that A is in Mod S
′
. Then the following assertions

are equivalent:

(i) A ∈ AC(R);

(ii) (S
′ ⊗R A) ∈ AC⊗RS

′ (S
′
);
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(iii) A ∈ AC⊗RS
′ (S

′
).

Proof. (i)⇒(ii). It is clear by Proposition 4.10(i).
(ii)⇒(iii). By [21, Lemma 1.1], S′A is isomorphic to a direct summand of

S
′
-module S

′ ⊗R A. Thus by [13, Proposition 4.2(1)], A ∈ AC⊗RS
′ (S

′
).

(iii)⇒(i). Assume that A ∈ AC⊗RS
′ (S

′
). Then TorS

′

j (C ⊗R S
′
, A) = 0 for

any j ≥ 1. Also, we have · · · −→ P1 −→ P0 −→ C −→ 0, where for all i ≥ 0,
Pi ∈ FP0(R) and free. Hence, we have the commutative diagram

· · · // (P1 ⊗R S
′
)⊗S

′ A //

∼=

��

(P0 ⊗R S
′
)⊗S

′ A //

∼=

��

(C ⊗R S
′
)⊗S

′ A //

∼=

��

0

· · · // P1 ⊗R A // P0 ⊗R A // C ⊗R A // 0,

where the first line is exact by (iii), and so the second line is also exact, and

hence TorRj (C,A) = 0 for any j ≥ 1.

On the other hand, Extj
S′

(C ⊗R S
′
, (C ⊗R S

′
) ⊗S′ A) = 0 for any j ≥ 1.

Since S
′

is a flat R-module, the sequence · · · −→ P1 ⊗R S
′ −→ P0 ⊗R S

′ −→
C ⊗R S

′ −→ 0 is exact. Thus, we have the commutative diagram

0 // HomS
′ (C ⊗R S

′
, (C ⊗R S

′
)⊗S

′ A) //

∼=
��

HomS
′ (P0 ⊗R S

′
, (C ⊗R S

′
)⊗S

′ A) //

∼=
��

· · ·

0 // HomS
′ (C ⊗R S

′
, C ⊗R A) //

∼=

��

HomS
′ (P0 ⊗R S

′
, C ⊗R A) //

∼=

��

· · ·

0 // HomR(C,C ⊗R A) // HomR(P0, C ⊗R A) // · · · ,

where the first and second lines are exact by (iii), and so the third one is also

exact, and hence ExtjR(C,C ⊗R A) = 0 for any j ≥ 1.
Also by (iii) and [17, Theorem 2.75], we have

A ∼= HomS′ (C⊗RS
′
, (C⊗RS

′
)⊗S′A) ∼= HomS′ (C⊗RS

′
, C⊗RA) ∼= HomR(C,C⊗RA).

Consequently, A ∈ AC(R). �

Proposition 4.15. Suppose that B is in Mod S
′
. Then the following assertions

are equivalent:

(i) B ∈ BC(R);

(ii) HomR(S
′
, B) ∈ BC⊗RS

′ (S
′
);

(iii) B ∈ BC⊗RS
′ (S

′
).

Proof. The proof is similar to the proof of Proposition 4.14. �

Under change of rings, Auslander and Bass classes are equivalent under the
pair of functors.



C-fpn-injective and C-fpn-flat modules – JMMR Vol. 14, No. 1 (2025) 437

Proposition 4.16. There are the following equivalences:

AC⊗RS
′ (S

′
)

(C⊗RS
′
)⊗

S
′−

∼
// BC⊗RS

′ (S
′
).

Hom
S
′ (C⊗RS

′
,−)

oo

Proof. From Proposition 4.14, A ∈ AC⊗RS
′ (S

′
) if and only if A ∈ AC(R).

Thus by [13, Proposition 4.1], (C ⊗R A) ∈ BC(R), and so (C ⊗R S
′
) ⊗S′ A ∼=

(C⊗RA) ∈ BC⊗RS
′ (S

′
) by Proposition 4.15. Also, we have A ∼= HomR(C,C⊗R

A) ∼= HomS′ (C ⊗R S
′
, (C ⊗R S

′
)⊗S′ A).

On the other hand, by Proposition 4.15, B ∈ BC⊗RS
′ (S

′
) if and only if

B ∈ BC(R). Thus from [13, Proposition 4.1], HomR(C,B) ∈ AC(R), and so

HomS′ (C⊗RS
′
, B) ∼= HomR(C,B) ∈ AC⊗RS

′ (S
′
) by Proposition 4.14 and [17,

Theorem 2.75]. Also, we have

B ∼= C ⊗R HomR(C,B) ∼= (C ⊗R S
′
)⊗S′ HomS′ (C ⊗R S

′
, B).

Therefore the assertion holds. �

By using Corollary 4.11, Lemma 4.12 and Propositions 4.10, 4.13, 4.16, we
get Foxby Equivalence under an almost excellent extension:

Theorem 4.17. (Foxby Equivalence under almost excellent extension of rings)
We have the following equivalences:

fpnF (S
′
)

(C⊗RS
′
)⊗

S
′−

∼
//

� _

��

(C ⊗R S
′
)fpnF (S

′
)

Hom
S
′ (C⊗RS

′
,−)

oo � _

��
fpnF (S

′
)≤k

(C⊗RS
′
)⊗

S
′−

∼
//

� _

��

(C ⊗R S
′
)fpnF (S

′
)≤k

Hom
S
′ (C⊗RS

′
,−)

oo � _

��
AC⊗RS

′ (S
′
)

(C⊗RS
′
)⊗

S
′−

∼
// BC⊗RS

′ (S
′
)

Hom
S
′ (C⊗RS

′
,−)

oo

(C ⊗R S
′
)fpnI(S

′
)≤k

(C⊗RS
′
)⊗

S
′−

∼
//?�

OO

fpnI(S
′
)≤k

Hom
S
′ (C⊗RS

′
,−)

oo
?�

OO

(C ⊗R S
′
)fpnI(S

′
)

(C⊗RS
′
)⊗

S
′−

∼
//?�

OO

fpnI(S
′
).

Hom
S
′ (C⊗RS

′
,−)

oo
?�

OO

Example 4.18. Let R be a (1, 2, 3)-ring, (for example, R = k[[x1]] ⊕ R
′
,

where R
′

is a valuation ring with global dimension 2), see [16, Proposition

3.7]. So, w.gl.dim(R) = 1 and gl.dim(R) = 2. If S
′

is the ring Mn(R) of
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n by n matrices over a ring R, then by [14, Example 1], S
′

is almost ex-
cellent extensions of R. In case R = C, for every M in Mod R, one easily
gets that Cfpn.idR(M) ≤ 2 and Cfpn.fdR(M) ≤ 1. So by Proposition 4.3,

(C ⊗R S
′
)fpn.idS′ (HomR(S

′
,M)) ≤ 2 and (C ⊗R S

′
)fpn.fdS′ (S

′ ⊗RM) ≤ 1.

Also, for every M in Mod S
′
, it follows that (C ⊗R S

′
)fpn.idS′ (M) ≤ 2 and

(C ⊗R S
′
)fpn.fdS′ (M) ≤ 1. Hence by Theorem 4.11, fpn.idS′ ((C ⊗R S

′
) ⊗S′

M) ≤ 2 and fpn.fdS′ (HomS′ (C ⊗R S
′
,M)) ≤ 1.

5. Conclusion

Employing relative homological techniques, we have expanded several funda-
mental homological concepts to incorporate findings related to semidualizing
modules. This paper focuses on the over rings R and S, and examines the
fpn-injective R-modules and fpn-flat S-modules under a (faithfully) semidu-
alizing bimodule C = SCR. So, we introduce and analyze the C-fpn-injective
R-modules and C-fpn-flat S-modules. Our investigation includes a study of
Foxby equivalence, duality pairs, preenvelopes and precovers concerning a pairs
of the classes CfpnI(R)≤k and CfpnF (S)≤k, and also the study of the same
features under the change of rings. Given the importance of these topics in the
field of homological algebra, in the continuation of the future research work, we
suggest further investigation into the Gorenstein properties of these modules
and the relative cotorsion modules.
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