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Abstract. Cloud computing environments require scheduling to allo-

cate resources efficiently and ensure optimal performance. It is pos-
sible to maximize resource utilization and minimize execution time by

scheduling cloud systems effectively. Meta-heuristic algorithms aim to

address this NP-hard problem by taking into account these QoS pa-
rameters. In order to deal with the task scheduling problem, we uti-

lize a new meta-heuristic algorithm known as Predator-Prey Optimiza-

tion (PPO). In PPO, predators and preys are modeled and their energy
gains are determined by their body mass and interactions. Faster conver-

gence rates enhance PPO’s ability to find optimal solutions. The balance
between exploration and exploitation makes it suitable for solving real-

world problems in unknown spaces. The PPO-based Task Scheduling al-

gorithm (PPOTS) has the goal of reducing execution time and makespan
while increasing resource utilization. In this study, the PPOTS algo-

rithm is compared to five well-known meta-heuristic algorithms: Whale

Optimization Algorithm (WOA), Salp Swarm Algorithm (SSA), Spotted
Hyena Optimization Algorithm (SHO), Grasshopper Optimization Algo-

rithm (GOA), and Sooty Tern Optimization Algorithm (STOA). Further-

more, the proposed PPOTS algorithm was compared with two new meta-
heuristic based scheduling algorithms, and showed a better performance

than the other two algorithms. Resource utilization and execution cost

are enhanced by 8% and 15%, respectively, through the proposed method.

Keywords: Cloud Computing, Task Scheduling, Predator-Prey Optimiza-

tion, Meta-heuristic.
2020 MSC : 68Qxx.

1. Introduction

Despite the many advantages of cloud computing, it is not always a good
choice because it is slow to respond to existing requests. As a result, fog com-
puting is more effective. In a fog environment, task scheduling is challenging.
As Internet of Things (IoT) clients, it is important that tasks are executed
on time and at lower costs; however, they also require that tasks are executed
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securely. In addition to generating large amounts of data, rapid IoT deploy-
ment also requires transferring that data to the cloud. In order to solve this
challenge, fog computing has been designed.

With fog and edge computing, users can be aware of their location and adjust
their mobility. The data can also be stored and processed close to the point
of use, which can overcome the limitations of cloud applications. In addition
to reducing cloud data transfers, fog technology improves IoT performance by
reducing the amount of data needed for processing, storing, and analyzing.
As a result, data from the edge is temporarily stored and processed rather
than transferred to the cloud, which reduces network traffic and delay. There
are fog nodes that manage storage, computation, and networking [1]. As a
distributed computing approach, fog and cloud are not integrated [2, 3]. Fog
technology allows cloud latency to be reduced by using unused resources from
nearby devices to overcome the latency issue. The cloud handles most tasks,
however. Fog computing consists of using devices near the clients that have
limited features, but high computing power, as opposed to cloud computing.

It is fundamental to distributed systems to utilize Load Balancing (LB),
which is a technique that optimizes the resources available to VMs (Virtual
Machines). Whenever workloads are dynamically distributed and resources are
optimally utilized, load balancing plays an integral role. An efficient workload
balance results in happier users and more efficient resource allocation. Load
balancing reduces data transmission times and prevents unstable Quality of
Service (QoS) situations in data centers caused by overloaded systems.

With the expansion of IoT in the digital world and the growth of real-time
applications, equal distribution of workload has become increasingly important
in the fog environment. By using load balancing, users are able to utilize
resources more efficiently and experience greater levels of satisfaction. It will
result in improved performance and resource utilization for the system. The
result is a reduction in overuse and underutilization of resources. It is possible
to reduce a system’s overall operating costs by using a distributed workload.
The user requests are continually passed to cloud-based fog architectures in bulk
amounts to take full advantage of fog nodes [4]. The load balancer distributes
tasks among all the processing nodes at the fog layer for execution by IoT
devices. With load balancers, workload is distributed among multiple servers
based on client requests, requests are routed only to available servers, and the
server capacity can be adjusted according to demand.

The use of metaheuristic algorithms has received increasing attention in re-
cent years for solving complex optimization problems. This is due to their high
effectiveness and ability to find approximate optimal solutions in polynomial
rather than exponential time, unlike conventional methods. Numerous meta-
heuristics have been employed to solve load balancing problems across a wide
variety of fields, including cloud computing and fog computing. By utilizing
natural methods, meta heuristic algorithms are striving to find the optimal lo-
cation across the search space based on the global optimal solution. Cloud and



Application of predator-prey optimization for task... – JMMR Vol. 14, No. 1 (2025) 443

fog environments are dynamic, and metaheuristic algorithms are highly effi-
cient in handling them. Nature- and population-based stochastic optimization
techniques are the most popular, focusing on nonlinear solutions to complex
problems.

Most algorithms are based on biological or physical phenomena, and often
on strategies used by creatures to solve problems. In terms of nature-inspired
algorithms, PPO (Predator-Prey Optimization) is an efficient algorithm that
models the interaction between the predator and the prey by starting with two
populations. After eating their prey, predators regain their lost energy and
gain positive energy by searching for, catching, and handling their prey that
requires little energy [5].

Improved Wild Horse Optimization (IWHO) algorithm was developed by
Saravanan et al. [6] to address long scheduling time, high-cost consumption,
and high virtual machine load in cloud computing. Firstly, IWHOLF-TSC
constructs a cloud computing task scheduling and distribution model. Secondly,
the best feasible plan for cloud computing task scheduling includes finding the
best whale individual. Improved whale optimization algorithm employs an
inertial weight strategy in order to improve local search capability. In order to
increase the exploration ability of wild horse optimization and avoid premature
convergence of the algorithm, the Levy Flight method is used.

Behera and Sobhanayak [7] proposed a hybrid algorithm combining Grey
Wolf Optimization Algorithm (GWO) and Genetic Algorithm (GA). They de-
signed a multi-objective cloud computing task scheduling algorithm with the
goal of minimizing time, energy, and cost. Enhanced crossover operators are
embedded in standard GA to improve its exploitation ability. In addition, the
GA-based GWO algorithm can solve large scheduling problems more quickly.
Cloudsim toolkit evaluations demonstrate the proposed algorithm’s efficiency
compared to existing approaches. In addition, it produces energy savings of
17%, 19%, and 23% over GWO, GA, and PSO.

Several researchers consider the task scheduling problem as a multiobjective
problem, meaning that more than one objective affects the task scheduling.
Many of them combine objectives into a linear weighted function, however some
solutions have been ignored due to the non-convex nature of the problem.

According to Saif et al. [8], a multi-objective algorithm is used to find the
best solution to the problem of task scheduling. Delay and energy consump-
tion are two main objectives. According to the fitness function, the solution
is chosen according to the minimum delay and energy consumption in the
Multi-Objective Grey Wolf Optimizer (MGWO). Thus, the value of the fitness
function is important for the proposed algorithm. MOP must improve multiple
conflicting objectives simultaneously. A fitness function cannot be used to com-
pare solutions in MOPs. In each iteration, the ideal solution is to implement
Pareto dominance in order to choose the optimal solution.

This paper continues as follows. Section 2 presents the background of cloud
computing, task scheduling, and PPO. Section 3 discusses existing methods
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for task scheduling in cloud environments. Section 4 describes the PPOTS
algorithm. Section 5 evaluates the performance of the PPOTS algorithm. In
section 6, the conclusion and possible future works are discussed. Table 1
provides the full names of all the abbreviations used in the article.

—l—l—

Abbreviation Full Name

IoT Internet of Things

LB Load Balancing

VMs Virtual Machines

QoS Quality of Service

PPO Predator-Prey Optimization

PPOTS PPO-based Task Scheduling algorithm

SaaS Software-as-a-Services

IaaS Infrastructure-as-a-Services

PaaS Platform as a Service

PSO Particle Swarm Optimization

ETC Expected Time to Compute

GWO Grey Wolf Optimization

PPBACO Performance and Budget-based Ant Colony Optimization

WOA Whale Optimization Algorithm

COBL Comprehensive Opposition-Based Learning

HGSO Henry Gas Solubility Optimization

EG Energy Gain

ABC Artificial Bee Colony

DA Dragonfly Algorithm

GA Genetic Algorithm

GSA Gravitational Search Algorithm

ACO Ant Colony Optimization
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FCFS First Come First Serve

IWHO Improved Wild Horse Optimization

MGWO Multi-Objective Grey Wolf Optimizer

RU Resource Utilization

SSA Salp Swarm Algorithm

SHO Spotted Hyena Optimization

GOA Grasshopper Optimization Algorithm

STOA Sooty Tern Optimization Algorithm

Q-ACOA Q-based Ant Colony Optimization Algorithm

ACOA Ant Colony Optimization Algorithm

OACT Optimal Average Completion Time

HAGA Hybrid Ant Genetic Algorithm

EC Execution Cost

SO Snake Optimization Algorithm

EWOA Enhanced Whale Optimization Algorithm

2. Background

2.1. Cloud computing. Cloud Computing is a new idea that provides ser-
vices and resources over the Internet to a large number of users on an as-needed
basis as a result of technological advances [9]. Furthermore, cloud computing
provides unlimited computing resources, including servers, storage, networks,
and applications, that are geographically distributed [10, 11]. With a pay as
you go model, cloud consumers can request resources at any time and from
any location based on their needs. As a result of cloud computing, a variety
of applications can be developed and maintained through access-based com-
puting infrastructure [12]. It also utilizes internet computer resources instead
of local computers for storing and processing data. Multiple computers are
used at several locations for a simultaneous project being run by a computer
group. A distributed analytics system that performs time-consuming data anal-
ysis is made more efficient by this distributed work [13]. The services offered
include Software-as-a-Services (SaaS), Infrastructure-as-a-Services (IaaS), and
Platform-as-a-Services (PaaS).

2.2. Task scheduling. An internet of everything (IoE) application generates
a vast number of tasks with variable lengths, which need to be prioritized for
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execution. The heterogeneous and resource-limited end devices in the network
are difficult to manage. Resources must be shared among heterogeneous devices
within heterogeneous environments. For this reason, agents should be assigned
in accordance with their resource demands so that jobs will be executed ap-
propriately [14]. The assignment of tasks and computing resources within the
cloud environment is fundamentally determined by task scheduling in cloud
computing. Task scheduling ensures optimal resource utilization, minimizes
the makespan, and improves user service quality. Through efficient resource
allocation and minimizing idle time, scheduling helps reduce energy consump-
tion. An optimal task schedule improves system performance, reduces response
times, and increases throughput. Task scheduling is directly related to cloud
performance, resource utilization, and user satisfaction [15]. As a result of fog
computing, which comes with the help of cloud computing, communication
between IoT devices can be sped up and response times can be reduced [10].

The following are several key challenges related to fog computing for task
scheduling:

• Heterogeneity of Devices: There are a variety of end devices that are
limited in resources in fog environments. It is challenging to manage
these heterogeneous devices and ensure efficient resource sharing.

• Scalability: Load balancing and task scheduling become more compli-
cated as the number of devices increases. In order to handle this growth
effectively, scheduling algorithms must be scalable.

• Latency and Real-Time Processing: The goal of fog computing is to
reduce latency by processing data closer to its source. The ability to
execute tasks quickly and in real-time is a crucial challenge for IoT
applications, which generate vast amounts of data.

• Security: IoT devices are rapidly being deployed, so ensuring that tasks
are executed securely is a major challenge. The security and privacy
of data must be maintained across distributed fog nodes.

• Resource Management: It is difficult to manage and allocate resources
efficiently in fog environments due to their dynamic nature. In order
to accomplish this, resource utilization must be optimized while energy
consumption and costs should be minimized.

• Cost Efficiency: It is essential to balance execution costs with the per-
formance requirements of IoT clients. Resource utilization and task
execution are also optimized.

Figure 1 illustrates how task scheduling works in a cloud computing environ-
ment. The following summary summarizes different workload balancing metrics
proposed in various literatures [16]:

• Throughput: This metric is used to calculate the process completion
rate.

• Cost: Cost is used by cloud providers to provide the lowest rate to all
customers. Customers can only use software or services.
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Figure 1. Cloud task scheduling model.

• Response time: A task’s execution time is measured by this parameter.
• Execution time: In general, the execution time of a process depends

on the input data, but it does not depend on when it was initiated.
• Makespan: Calculates how long it will take the user to complete a task

or to get access to the resources.
• Energy consumption: Each node’s energy consumption is calculated.

Using load balancing, each node is equally loaded, which avoids over-
heating and reduces energy consumption.
• Scalability: When the number of nodes in the system increases, load

balancing algorithms are capable of performing uniform load balancing
as required among the nodes. Highly scalable algorithms are preferred.
• Migration time: Upon becoming overloaded, a node must be trans-

ferred to a node which is currently underloaded.

2.3. Predator-Prey Optimization (PPO). For estimating predator-prey
interactions, PPO uses a mechanistic approach based on the obtained features
at individual levels [5]. As a result of this method, predation is implied by
motion by essence. A predator moves to snag a prey, and the prey must escape
after being snatched.

Hunting involves three steps:

(1) It uses cyclic methods to locate prey. Predators consume energy to
hover against their own weight. Archimedes’ force and inertia play a
crucial role in shaping movement. Due to their detection distance and



448 Z. Jalali Khalil Abadi et al

Figure 2. The pseudo-code for PPO algorithm.

abundance of prey, predators detect prey at a distance and encounter
them.

(2) Successful encounters can lead to sequences. A prey moves toward a
trap and then attempts to escape. Predators must keep buoyancy while
handling prey by lifting themselves and the prey during handling.

(3) During eating and mechanical movements, a predator maintains its
position in the water. In this case, the procedure is called handling.

According to Figure 2 and Figure 3, PPO’s algorithm can be categorized into
seven components based on its functions. So, we have: (1) Population definition
that generates solutions, (2) Calculating prey and predator mass based on
their fitness, (3) Calculation of search costs, (4) Catching, (5) Handling, (6)
Calculating energy, and (7) Attempts to replace the worst solution with the
best. By repeating heuristic searches, the desired solution will emerge.
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Figure 3. PPO main steps.

Due to the new parameter (e.g., energy gain), the PPO algorithm can find
the optimal solution faster, helping to perform global and local searches. The
PPO algorithm has also been applied to solving the problem of identifying
features. Furthermore, PPO’s performance for feature selection issues shows
that it can solve real problems with unknown search spaces.

3. Related Work

Scheduling tasks involves assigning the tasks submitted by users to the avail-
able virtual machines (VMs) to ensure the least amount of response time.
Scheduling tasks in cloud computing environments is an NP-Hard problem [17].
Many serious efforts have been made to find a solution to this problem, and as
cloud computing is a relatively new field, there is still room for further research.
The following is a brief overview of what has been accomplished.

The Particle Swarm Optimization (PSO) algorithm is used by Pradhan and
Satapathy [18]. Therefore, a solution with efficient QoS parameters such as
makespan, cloud utilization, and energy consumption was selected. Application
models represent groups of tasks. A schedule is then compiled and a queue is
created. Tasks have different properties, such as execution time and completion
time. This model estimates the execution time of the application. Tasks are
mapped to machines/clouds using a matrix called Expected Time to Compute
(ETC). PSO scheduling method was used to develop a new energy model that
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estimated total energy consumption. At each stage of the process, a fitness
function is evaluated in order to identify the best solution. As a result of the
proposed algorithm, the overall time and energy consumption will be optimized.

According to Indhumathi et al. [19], task scheduling is used to address the
issue of workload. In this work, task execution is achieved with the help of
grey wolf optimization (GWO). Additionally, fault detection and reschedul-
ing of failed tasks are done simultaneously. For the purpose of analyzing the
proposed framework, it is executed on JAVA. In order to perform tasks effec-
tively and without lag, they must be scheduled. A two-stage process is used
to implement the proposed system. The first step is task scheduling, followed
by fault tolerance. Task scheduling begins with the user providing the task.
Tasks are sent to the VM, which is referred to as a processing unit. After that,
VM bandwidth is calculated. Estimating bandwidth is based on task prior-
ity. Performance optimization is used in this algorithm to select VMs. Using
an optimization algorithm called grey wolf, the proposed work will select the
virtual machine. This approach will be used to complete all tasks requested
by the user. It is determined when the task will start and how long it will
take to finish. The proposed approach allows resource allocation to be done
effectively. The second stage of the process is the approach of fault tolerance
after task scheduling is completed. The fault tolerance mechanism identifies
the failed task and reschedules it. This proposed work aims to schedule tasks
in a way that overcomes the workload issue. In this proposal, load balancing
is also accomplished along with task scheduling.

According to Prem Jacob and Pradeep [20], two optimization algorithms
have been combined into one, known as CPSO. In addition to reducing dead-
line violations and their costs, the proposed algorithm also reduces their du-
ration. A local resource manager manages and monitors cloud computing en-
vironments. Resource costs are calculated by collecting CPU, memory, and
individual task execution time data from nodes and sending it periodically to
the global resource manager. To ensure efficient scheduling, task managers and
resource managers provide schedulers with task and resource information. As
a result of the algorithms matching the tasks with the appropriate resources
according to deadlines and costs, the tasks are completed on time. Utiliz-
ing CloudSim 3.0 toolkit, the CPSO algorithm is evaluated. In comparison
to PBACO (Performance and Budget-based Ant Colony Optimization), ACO
(Ant Colony Optimization), MIN-MIN, and FCFS (First Come First Serve),
the proposed work minimizes the makespan, cost, and deadline violation rate.

In order to meet end-users’ dynamic requirements, advanced scheduling tech-
niques must be in place to map tasks to cloud resources optimally. The whale
optimization algorithm (WOA) is modified by Abd Elaziz and Attiya [21] to a
comprehensive opposition-based learning algorithm for optimizing task schedul-
ing. The method is called HGSWC. HGSWC improves solutions through WOA,
while COBL (Comprehensive Opposition-Based Learning) improves worst so-
lutions through computing their opposites. In contrast to conventional HGSO
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and WOA, HGSWC is validated on 36 optimization benchmark functions.
HGSWC can produce optimal task schedules with better makespan for all test
instances, according to the results.

Huang et al. [22] presented a task scheduler for cloud computing using sev-
eral discrete variants of particle swarm optimization. Population-based swarm
intelligence algorithms involve two phases of optimization: global and local.
When the two phases are balanced correctly, the algorithm can converge to the
global best position. A global search operator is better than a local search op-
erator for any algorithm. A global optimum can only be achieved by exploring
more search areas. This balance is maintained by at least one coefficient in
each algorithm. Inertia weight (w) is the only coefficient in PSO algorithms
that plays this role. The inertia weight should be gradually reduced over iter-
ation rather than a constant value being used. Providers of cloud computing
services will receive requests for services. This means the cloud provider must
establish a schedule that is optimal for the workflow application request made
by the user. Based on the optimized schedule, the system’s makespan can be
minimized by choosing the optimal execution nodes (VMs). Comparing PSO-
based schedulers to GSA (Gravitational Search Algorithm), ABC (Artificial
Bee Colony), and DA (Dragonfly Algorithm), the use of logarithm decreasing
strategies reduces average makespan by 19.12%, 2.1.42%, and 15.14%, respec-
tively.

In Vijarania et al. [23], a load balance-aware task scheduling policy was
proposed. Chromosomes are encoded using direct encoding methods. A chro-
mosome’s length is determined by its number of tasks, and its genes represent
the resources used by the tasks. Chromosome fitness is measured by the fit-
ness function. An individual’s fitness value reflects its performance within a
population. In determining whether a chromosome will move to the next gen-
eration, the selection operator evaluates the performance of each individual
chromosome. In proportion selection method, chromosomes are selected based
on their fitness values. Crossover operators select two chromosomes, then se-
lect their intersection point. There is an exchange of two chromosomes at the
intersection point, which results in two new offspring. An intersection point is
chosen using a single-point crossover operator that generates new offspring at
random. By using the presented mechanism, costs and completion times are
significantly reduced, and better results are obtained.

The Q-ACOA (Ant Colony Optimization Algorithm) algorithm is proposed
by Su et al. [24] for resource allocation and task scheduling in cloud comput-
ing in order to analyze the current problems, expected time, and expected
cost. The time taken to complete tasks in cloud computing, the data migra-
tion time, the cost of completing tasks, and user satisfaction are the evaluation
indicators. Task scheduling systems in cloud computing should guarantee that
the completion time for each task is no longer than the expected deadline of
users, thus meeting QoS of time. Developed on the basis of improvements to
the law of probability transition, the law of pheromone initialization, and the
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law of pheromone update, the ACOA (Ant Colony Optimization Algorithm)
is optimized. During optimization, pheromone size corresponds to the degree
of mapping between the corresponding task and the data migration. When
selecting the next node or direction, the probability transition rule is reflected.
After optimization, the algorithm selects a global update for pheromone up-
dates, and finally returns the optimal solution. Accordingly, Q-ACOA adjusts
pheromone increments under comprehensive consideration of data migration
time by normalizing task completion time and cost consumption. Cloud com-
puting can benefit from the improved ACOA (Q-ACOA) when it comes to
resource allocation and task scheduling.

As a part of their heuristic-based task scheduling approach, Tripathi and
Kumar [25] designed an efficient load balancing mechanism for heterogeneous
environments, which is intended to enhance both user and provider quality of
service. As the threshold value, the method uses the Optimal Average Com-
pletion Time (OACT). The first VM is mapped using a circular FCFS manner
as long as its completion time does not exceed the OACT. In order to minimize
load imbalances, task loads are evenly distributed across VMs. This optimizes
resource utilization and reduces the makespan (maximum completion time) for
each VM. Additionally, this method reduces user processing costs and aver-
age waiting times. Experiments were conducted with a variety of task streams
and VMs of varying lengths and speeds to ensure the proposed strategy was
effective. Compared with existing scheduling policies like Round Robin, Con-
ductance algorithm, and shortest job first, the proposed strategy improves QoS
parameters and fulfills both users’ and providers’ requirements.

Krishnan and Rajalakshmi [26] presented a cost-optimized scheduling algo-
rithm for multi-core data parallel tasks. Parallel executions can be performed
on a multicore resource, which increases the number of parallel executions,
thereby meeting the deadline. This paper develops a model to optimize data
parallel task operational costs by assigning load fractions to multi-core re-
sources. Data parallel tasks were explored in this work. In terms of processing
tasks by deadline at an optimized cost, the work results in better solutions.

Task scheduling is an essential component of cloud computing to improve
throughput, response time, energy consumption, and resource utilization. Task
scheduling difficulties can be effectively solved by bio-inspired algorithms, but
they need a lot of computational power and time because of cloud workload
and complexity. Ajmal et al. [27] proposed the Hybrid Ant Genetic Algo-
rithm (HAGA). This algorithm combines features of genetic algorithms and
ant colony algorithms. The virtual machines are pheromoned after tasks are
assigned. Detecting loaded virtual machines and dividing tasks into groups
reduces solution space effectively. This algorithm has a small solution space,
resulting in reduced convergence and response times. This solution minimizes
the running time of workflows and tasks.
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Table 2 compares the discussed scheduling algorithms. Most algorithms pre-
sented in Table 2 are based on reducing makespan or cost, which have a signif-
icant impact on cloud system efficiency. In this paper, we present a task sched-
uling algorithm that takes into account makespan, resource utilization, and exe-
cution cost parameters. —p2cm—p0.6cm—p1.8cm—p1.3cm—p1.6cm—p1.8cm—p2.2cm—

Reference Year Performance metrics Simulator Technique Advantages Disadvantages

Pradhan and Satapathy [18] 2023 Makespan, Energy consumption, Cloud utilization

Not reported PSO-based task scheduling algorithm Achieves an overall improvement in the
makespan and generates cloud utilization and average energy consumption on cloud systems.

Advanced evolutionary scheduling strategies have not been analyzed with the proposed al-

gorithm.

Indhumathi et al. [19] 2023 -Makespan, Execution time, Communication delay, Com-

putational delay, Failure, Utilization rate JAVA on CloudSim, JDK7.0, and Eclipse Task

scheduling and fault tolerance mechanism based on GWO Task execution is more efficient
with a lower failure rate and a higher throughput. There is no load balancing.

Prem Jacob and Pradeep [20] 2019 Makespan, Cost, Deadline violation rate CloudSim

Combine Cuckoo Search (CS) and Particle Swarm Optimization (PSO) Performance and
cost optimization of scheduling. In addition, other QoS parameters weren’t considered.

Abd Elaziz and Attiya [21] 2021 Makespan CloudSim HGSO based on WOA and

COBL Optimizes task scheduling for cloud computing resources. Due to its higher number
of control parameters, HGSWC may have less flexibility when implementing.

Huang et al. [22] 2020 Makespan MATLAB 2014a PSO-based scheduler It reduces

the makespan significantly compared to other algorithms. Load balancing and energy con-
sumption were not considered in this method.

Vijarania et al. [23] 2021 Cost, Completion time, Load of individual VM MATLAB

GA-based task scheduling algorithm Significant savings are made in terms of cost and time.
Other factors, such as time span, task completion time, and load balancing, were not taken

into account.

Su et al. [24] 2021 Migration, Cost, Resource allocation, Completion time CloudSim
Q-ACOA In terms of task completion time, total data migration time, cost consumption,

and user satisfaction, Q-ACOA performs the best. For various reasons, correlation analysis

is not performed. Task scheduling and resource allocation in cloud computing will be made
easier by considering the correlation between tasks.

Tripathi and Kumar [25] 2022 Makespan, Resource utilization, Cost, Waiting time

CloudSim Heuristic-based Task Scheduling Policy Task loads are distributed across VMs
effectively, reducing imbalance. Complex to understand and implement. Calculating opti-

mal completion times may introduce computational overhead. Its scalability with increasing

tasks and heterogeneous resources.

Krishnan and Rajalakshmi [26] 2022 Cost Alibaba Cluster Data V2017 Cost-optimized

data parallel task scheduling in multi-core resources Optimum load fractions are assigned to

multicore resources to reduce operational costs. This approach may be limited to certain
types of parallel data processing.

Ajmal et al. [27] 2021 Execution time, Cost CloudSim Hybrid Ant Genetic Algorithm

(HAGA) Optimizes the use of resources, reducing waste and improving overall performance.
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Suitable for heterogeneous environments, this approach is versatile for cloud computing. Ad-
ditional computation is involved in calculating the optimal average completion time (OACT)

and managing the task distribution. A growing number of tasks and VMs may cause scala-

bility issues.

The proposed method 2024 Execution cost, Resource utilization, Makespan MATLAB
PPOTS Modeling predators and preys enables it to mimic their energy gain based on their

body mass and interactions, resulting in an effective optimization process. In comparison to

other meta-heuristic algorithms, PPOTS achieves faster convergence rates. It is important
to consider security, scalability, load balancing, and availability.

4. PPO-based Task Scheduling (PPOTS) Algorithm

A simple definition of the task scheduling problem is provided, and then we
explain how the problem is formulated. The task scheduling problem concepts
are explained in Section 4.1, the objective functions are stated in Section 4.1.2,
the PPO parameters explained in section 4.1.3, and finally, the upates of process
is explained in Section 4.1.4.

Task scheduling in cloud and fog computing environments are comprehen-
sively analyzed and innovatively discussed in this article. The following are
some of the key contributions:

• Innovative Use of Metaheuristic Algorithms: Predator-Prey Optimiza-
tion (PPO), in particular, is shown to be effective when solving com-
plex optimization problems in cloud and fog computing. In dynamic
environments, this algorithm provides approximate optimal solutions
efficiently.

• Multi-objective Function: The proposed approach optimized makespan,
execution cost, and resource utilization using a multi-objective objec-
tive function.

• Detailed Performance Evaluation: The article evaluates the PPOTS
algorithm thoroughly, comparing it with existing methods, and demon-
strating its effectiveness in terms of makespan, resource utilization, and
execution cost. Analysis of the proposed solutions in detail helps un-
derstand their practical benefits.

4.1. The model of task scheduling. All tasks assigned among available
VMs based on user needs and service quality. The main aim of this work is
to increase the QoS metrics performance in cloud computing. Suppose that a
cloud datacenter contains n task and m VM: T = {T1, T2, . . . , Tn} , where Ti
means the i− th task and VM = {VM1, V M2, . . . , V Mm} , where VMj means
the j − th VM in the cloud environment, but the condition for execution of
such tasks is: n > m.

In order to maximize virtual machine group utilization, cloud service providers
strive to reduce the wait time and the makespan between virtual machine
groups. Makespan can be minimized by assigning the set of jobs or tasks
to a set of virtual machines, where the order of execution of the tasks or jobs
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is irrelevant. Therefore, a lower value of makespan indicates a more efficient
scheduling algorithm. Service and instance costs are determined by the type of
service or instance and charged at a time-based rate. Costs are determined by
the amount that the user must pay to the provider of the service. It is deter-
mined by the scheduling algorithm which VM will have the lowest execution
cost when executing tasks. The algorithm provides QoS while reducing cloud
computing costs by placing as many services as possible on virtual machines.
In resource utilization, how much of the available resources is being consumed
at any one time. To ensure the method is as productive as possible, we use it to
plan how to utilize the resources more effectively. Multiple resource categories
are able to be predicted by effective resource utilization. This will help you
avoid reworking schedules and assigning tasks at the beginning of planning.
Assigning employees to the project will also be possible.

According to the above description, Figure 4 shows a pseudocode of task
scheduling based on the PPO method. The Figure 5 illustrates the obj (objec-
tive function) used by Algorithm 2 in Figure 4. Figure 6 shows the flowchart
for the PPOTS algorithm. The algorithm focuses on three important criteria
in the objective function: makespan, resource utilization, and execution cost.

Figure 4. Pseudo-code for PPOTS algorithm.

4.1.1. Initialization. The aim of PPOTS is to schedule all tasks to the available
VMs which minimize makespan, resource utilization, and execution cost so that
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Figure 5. Objective Function (fobj) Pseudocode.

the user satisfied and the efficiency increases. Finally, the output of algorithm
is a matrix with m column and n row that specifies by which VM each task
should be executed. Objective function computed as follows:

(1) X =

 x11 . . . x1m
...

. . .
...

xn1 · · · xnm


where xij is a decision variable and calculated by:

(2) xij =

{
1 if Ti is assigned to VMj

0 if Ti is not assigned to VMj

With this condition:

(3)

m∑
j=1

xij = 1 for 1 ≤ i ≤ n

Figure 7 shows how each individual in each population (prey and predator)
is initially set up. After that, the task positions are randomly assigned based
on the task. Numbers are then rounded up. Round numbers indicate tasks
assigned to individual VMs. This means that the second VM is assigned to the
fourth task. Figure 7 shows how an agent adapts to the task length based on
the task information received.
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Figure 6. Flowchart of the PPO-based task scheduling algo-
rithm.

4.1.2. Fitness evaluation. Makespan: The makespan is the total time it takes
the resources to complete all tasks. In the cloud, VM utilization is determined
by how effectively resources are utilized. It is an important issue, because
researchers believe that the performance of the scheduling algorithm is depends
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Figure 7. An overview of how the agent works.

on makespan. In addition, reducing the makespan rate satisfy the user and
make the executions faster. The makespan formula define as follows:

(4) Makespan = max (Extj) , 1 ≤ j ≤ m

Where Extj is the VMj execution time which calculated based on Eq. 5.

(5) Extj =

n∑
i=1

xij × CTij

Where Xij is the decision variable and CTij is the completion time of executing
task i on VMj which calculated by Eq. 6.

(6) CTij =
lengthoftheTaski

processingtimeoftheVMj

Resource Utilization (RU): System efficiency is the number of resources it
utilizes effectively. By minimizing idle time of cloud service provider resources
and keeping them busy executing customer tasks, it maximizes cloud service
provider profits. Therefore, the RU can be defined as follows:

(7) RU =
TEXEC

Makespan×M
Where M shows the number of VMs and TEXEC is the total execution time
which calculated by Eq. 8.

(8) TEXECij =

m∑
i=1

VMETj , 1 ≤ j ≤M

Where VMETj is the execution time of j − th VM which calculated based on
Eq. 9.

(9) VMETj =

M∑
i=0

xij × EXECij , 1 ≤ j ≤M



Application of predator-prey optimization for task... – JMMR Vol. 14, No. 1 (2025) 459

Which N shows the number of Tasks, and EXECij is the execution time of
Task i on virtual machine VMj that obtained based on Eq. 10.

(10) EXECij =
LTaski

CapVMj

Where LTaski
is the computing time for executing Task i and CapVMj

is the
capacity of virtual machine j.

Execution Cost: Execution cost refers to the amount the user pays to the
cloud provider for renting a VM. The cost per unit time of a virtual machine
is dependent on the time it takes to perform a task. To reduce execution costs,
a suitable task scheduling algorithm allocates tasks to VMs optimally. The
execution cost of Task i can be calculated as follows:

(11) ECij = Pricej ×
CTij
3600

Where Pricej is the price of VMj and CTij is the completion time of executing
Task i on VMj .

Finally, the optimization objective function is computed as follows:

(12) Foptimal = Makespan+ (
RU

M
) + (

TEXEC

N
)

4.1.3. PPO parameters. PPO involves individuals in prey populations explor-
ing a large area of search space. Meanwhile, predators are looking for suitable
prey to hunt (i.e., the prey which can provide the greatest amount of energy).
To spread preys, three distributions are used, which are selected for initializa-
tion based on the ability to spread preys better.

There are two types of prey that each predator pursues in the PPO. The
best prey (PRbest) and its corresponding prey (PRi). Predator i (PRDi) moves
toward these preys. The movement of the i − th predator can be calculated
using Eq. 13 by choosing the vertical movement.

(13) PDRver
i (t+ 1) = PRDi(t) + V ver

i (t+ 1)

Where V ver
i (t+ 1) calculated by Eq. 14.

(14)

V ver
i (t+1) = (D×W ×A×V ver

i (t))+((
T

t
)×TPbest×sin(θ1)×Tcorr×sin(θ2))

Where D,W , and A show drag, weight, and Archimedes forces, respectively.
The TPbest indicates the vector from the predator to the best prey. Predator-
prey vectors are shown by the Tcorr. θ2 indicates the angle between the predator
and best prey, and θ1 the angle between predator and best prey.

The value set for D,W , and A affects exploration and exploitation in PPO.
To demonstrate which setting is best for D,W , and A, the following settings
are tested.

Setting 1: D= [1-0], W= [1-0], A= [1-0] //lower value for W , and A
Setting 2: D= [1-0], W= [2-0], A= [2-0] //standard value for W , and A
Setting 3: D= [2-0], W= [3-1], A= [3-1] //higher value for D,W , and A
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Setting 4: D= [0.25-0], W= [0.5-0], A= [0.5-0] //very low value for D,W ,
and A

Figure 8. The distribution of individuals after an iteration
for different settings of D,W , and A.

Figure 8 indicates that setting 2 is appropriate for algorithm because in early
iterations individuals need to explore the search space instead of converge on
a specific location.

4.1.4. Update process. Based on the objective function, the algorithm calcu-
lates the energy of predators and generates a new population before updating
the search agent. Whenever the strongest predator (apex) has the highest en-
ergy gain, it is directly passed to the next iteration. All predators (other than
apex predators) will survive for the next generation if they exert a positive
influence on exploitation activities during hunting. Mutation and crossover op-
erate to evolve predators that fail to hunt and have little effect on exploitation
activities. In addition, survivors of preys produce new generations of children
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for the next generation. In addition to avoiding predators, they explored un-
known territories. In each iteration, predators and preys will be reassigned. A
predator that consumes one prey can calculate its total energy gain (EG) [5].

There is a herd (i.e., team) of predators in the population (Predator) against
a prey population (Prey). As a result, we try to improve them with regard to
swarm behavior. According to paper [5] two populations are needed to generate
new populations for the next iteration (t+ 1) from current populations at the
current iteration (t). There are three main steps in the evolving process:

(1) Identify weak predators and strong preys.
(2) Create a mixed population of predators, and predators with successful

escape capabilities, contributing to the exploitation of prey.
(3) Determine which predators to create based on the solutions in the

mixed population.

5. Simulation Experiment

The performance of the PPOTS algorithm evaluated in MATLAB R2018a
software on a PC with Intel(R) Core (TM) i5-8250U CPU with 1.60, 1.80
GHz, and RAM of 12 GB running on 64-bit Windows 10 Pro operating system
platform. This section reviews the experimental results and compares them on
two levels. The first level includes the comparison of the proposed method with
five well-known meta-heuristic algorithms, fully explained in section 5.1. The
second level is given in section 5.2, in which the results of the proposed method
are compared with two existing metaheuristic-based scheduling algorithms.

5.1. Comparison with various meta-heuristic algorithms. The PPOTS
algorithm is compared with five well-known meta-heuristic algorithms, WOA
(Whale Optimization Algorithm) [28], SSA (Salp Swarm Algorithm) [29], SHO
(Spotted Hyena Optimization) [30], GOA (Grasshopper Optimization Algo-
rithm) [31], and STOA (Sooty Tern Optimization Algorithm) [32].

All the mentioned algorithms have been converted into task scheduling al-
gorithm using the objective function (fobj) used in this article. Also, the pro-
posed algorithm is evaluated under equal conditions and on the same objective
function (the proposed objective function in this paper) to show that the pro-
posed method is suitable for the scheduling problem and can optimally allocate
tasks to resources fairly. In order to evaluate the performance of the proposed
method, 100-500 tasks are generated, each with its own id and size. The
dataset consists of three types (low, medium, high) of MI. MATLAB generates
tasks using the uniform distributed pseudorandom integer function randi().
The function returns a three-dimensional array [ID, size, type]. It consists of
integers on the interval [min, max]. The proposed method has weakness in
workflow datasets.

The worst complexity based on population size (N), problem dimension
(D), maximum iteration (Max iter) and cost function evaluation (CF ) for
PPOTS are given in Table 1 as follows: Scenario1 : Tasks are fixed, while VMs
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Table 1. The complexity of the algorithms in the worst case.

Methods Complexity

PPOTS O(Max iter((N × CF ) + (N ×D)))

WOA O(Max iter((N ×D) × (N × CF )))

SSA O(Max iter((N ×D) × (N × CF )))

GOA O(Max iter((N ×D) × (N × CF )))

SHO O(N(D(1 + 2 ×Max iter)) × CF )

STOA O(Max iter((N ×D) × (N × CF )))

range from 20 to 50. Table 2 shows details of the environmental simulation for
scenario 1.

Table 2. Experiment setup details for scenario 1.

Parameters Value

Number of tasks 100

Population size 30

Number of VMs 20-50

Maximum iteration 100

Figures 9, 10, and 11 show the comparisons of the makespan, resource uti-
lization, and execution cost based on different numbers of VMs and fixed tasks.
According to Fig. 9, PPOTS has the lowest makespan (about 15%) when the
number of VMs is increased. Figure 10 illustrates the resource utilization of
the algorithms. In comparison to WOATS, SSATS, SHOTS, GOATS, and
STOATS, the PPOTS algorithm is more efficient. According to Figure 11,
different algorithms have different degrees of execution cost. The proposed al-
gorithm allocates tasks to resources optimally and distributes VMs efficiently.
Scenario2 : This experiment involves a fixed number of VMs with a variable

number of tasks. Tasks range from 200 to 500. Scenario 2 parameters are shown
in Table 3. By reducing the makespan value, scheduling has demonstrated that

Table 3. Experiment setup details for scenario 2.

Parameters Value

Number of tasks 200-500

Population size 30

Number of VMs 50

Maximum iteration 100

it can effectively allocate resources to tasks in an appropriate manner. Figure 12
shows the results of the comparison of the makespan metric between WOATS,
SSATS, SHOTS, GOATS, and STOATS based on various numbers of tasks. In
comparison with other methods, the PPOTS has a better makespan. Based on
the resource utilization parameter, Figure 13 compares the PPOTS algorithm
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Figure 9. Comparison of Makespan (various numbers of
VMs).

Figure 10. Comparison of resource utilization (various num-
bers of VMs).

with other meta-heuristic algorithms (about 8.25%). The resource utilization
decreases as the number of tasks increases. Based on Figure 14, the proposed
algorithm has a lower execution cost. The execution cost increases as the
number of tasks increases. In convergence analysis, the PPO algorithm finds
an optimal solution more rapidly, largely thanks to a new parameter (energy
gain) that enables local and global search. With WOA, fewer analyses were
considered (function evaluation) in order to minimize the total cost. When the
scalability parameter is taken into account, SSA is capable of solving highly
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Figure 11. Comparison of execution cost (various numbers
of VMs).

Figure 12. Comparison of makespan (various numbers of
tasks).

challenging test functions with and without noise. GOA makes a significant
contribution to the solution of real problems with unknown search spaces. In
comparison with other algorithms, STOA has an average performance in terms
of makespan and cost, but it has a good performance when it comes to resource
utilization. Moreover, STOA can solve challenging and high-dimensionality
constrained real-world problems. SHO performs well in terms of utilization,
but not in terms of cost and timeliness.
Scenario3 : The experiment is performed based on the various numbers of

iteration in this scenario. The parameters details of this scenario illustrate in
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Figure 13. Comparison of resource utilization (various num-
bers of tasks).

Figure 14. Comparison of execution cost (various numbers
of tasks).

Table 4. In order to increase the clarity, the objective function modified as

Table 4. Experiment setup details for scenario 3.

Parameters Value

Number of tasks 300

Population size 50

Number of VMs 50

Maximum iteration 1-300
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follow:

(15) Foptimal = Makespan+ (1−RU) + TEXEC

Due to the fact that all objectives in Equation11 must become minimal, the
method which found a solution with the lowest Foptimal is the most efficient.
Figure 15 illustrates the convergence of each method over time. As shown in
Fig. 15, the proposed algorithm has a faster convergence speed than the others.
It illustrates the convergence performance of various optimization algorithms
over 300 iterations. In comparison to other algorithms, the proposed algorithm
is more efficient. Moreover, because the outputs were not close to each other,
the normalization function ’z score’ was used to normalize the outputs by cen-
tering the data on 0 and scaling it to 1. The WOA and SHO algorithms have
poor exploitation abilities. In contrast, other algorithms (e.g., SSA, STOA,
GOA) focus on exploring the search space during the first iteration but fall
into the trap of local optimality and cannot reach the global optimality. During
the middle iterations, most algorithms, including PPOTS, continue to decrease
their fitness values but at a slower rate. As iterations increase, the fitness
value of the PPOTS algorithm decreases. Towards the final iterations, PPOTS
achieves a fitness value, which is lower than that of the other algorithms, in-
dicating it has found a better solution. Because PPOTS compromises search,
catching, and handling well, it is a good choice. In the last iteration, PPOTS
searches the entire search space and avoids the local optimal trap to find the
best global optimal solution. In Figure 15, it can be seen that PPOTS con-
verges more effectively than the other algorithms. Additionally, it reaches and
maintains the lowest fitness value towards the end of the iterations as well as
rapidly decreases at the start. PPOTS finds a better optimal solution faster
and maintains superior performance throughout the process of optimizing the
given problem.

As the agents attempted to traverse the entire search space, there is a higher
time complexity than in other metaheuristic algorithms. A greater number
of variables that are affected by searching the problem space and assigned
randomly. Improving the efficiency of the PPO algorithm itself remains an
important area of research. The study needs to consider security, energy con-
sumption, scalability, load balancing, and availability in future work.

It is necessary to conduct a more comprehensive statistical analysis of the
results section. Table 5 presents the Statistical Friedman test result to better
demonstrate superiority.
SumofRank(EC) = 1 + 2 + 3 + 4 + 5 + 6 = 21
SumofRank(RU) = 1 + 2× 2.5 + 3 + 2× 4.5 = 18
SumofRank(Makespan) = 1 + 2× 2.5 + 3 + 2× 4.5 = 18
The Friedman test is computed based on Eq. 16.

(16) Q =
12

nk(k + 1)

k∑
j=1

R2
j − 3n(k + 1)
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Figure 15. The algorithm’s convergency.

Table 5. Statistical Friedman test on the proposed method
and the other compared methods.

Methods EC RU Makespan Rank (EC) Rank (RU) Rank (Makespan)

PPOTS 46.20 0.064 12.97 1 1 1

WOA 56.87 0.055 12.99 4 2.5 2.5

SSA 48.06 0.058 12.99 2 3 2.5

SHO 54.38 0.055 13.05 3 2.5 4.5

GOA 60.54 0.059 13.02 6 4.5 3

STOA 57.67 0.059 13.05 5 4.5 4.5

Where the number of methods is n, which is equal to 6, the number of compared
criteria is k, and Rj is the sum of the Rank for j.
Q = 12

6×3×4 × (212 + 182 + 182)− 3× 6× 4 = 109.5
This critical value can be found by looking at the chi-square distribution with

k − 1 degrees of freedom. A degree of freedom of 2 is obtained for k = 3. At a
significance level of α = 0.05, the critical value of 2 with 2 degrees of freedom
is approximately 5.99. The null hypothesis can be rejected since Q = 109.5 is
greater than the critical value of 5.99. There is a significant difference between
the results of the three compared methods.

5.2. Comparison with metaheuristic-based task scheduling algorithms.
Cloud computing has gained a great deal of attention in recent years due to
its expanding platform and features, such as the ability to multiplex users on
shared infrastructure and provide on-demand resources. Cloud computing re-
lies heavily on efficient utilization of computer resources. The scheduling of
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tasks is crucial to optimizing the performance of cloud systems. It is challeng-
ing to schedule virtual machines in dynamic cloud environments characterized
by uncertainty and constant change. Cloud task scheduling remains unre-
solved despite numerous efforts. In addition to varying scheduling approaches,
researchers continue to improve overall cloud performance with the incorpora-
tion of diverse quality-of-service characteristics.

Zhang and Wang [33] proposed an Enhanced Whale Optimization Algorithm
(EWOA). The EWOA combines the WOA with the Lévy fight. As a result of
the incorporation of Lévy fight, WOA’s search space will be widened, which will
expedite convergence with adaptive crossover. The Cloudsim tool is used to
simulate and evaluate EWOA under various test conditions. The effectiveness
of EWOA is evaluated by comparing it with existing algorithms using various
parameters. According to the results, EWOA outperforms other algorithms in
terms of resource utilization and execution costs, which demonstrates its supe-
riority in addressing the complexity of multi-objective cloud task scheduling.

Damera et al. [34] presented an innovative task-scheduling algorithm that
improved time and energy efficiency as well as overall quality-of-service fac-
tors. Using sine chaos mapping, spiral search strategies, and dynamic adaptive
weights, the proposed technique enhances Snake Optimization Algorithm (SO).
In addition to escaping local optima, these enhancements improve global search.
In comparison to other models, the proposed method performs better in cloud
scheduling.

Based on the descriptions of the two methods above, we compare the pro-
posed method PPOTS based on the settings of 500 tasks and 50 virtual ma-
chines. Figure 16 shows that the proposed method, PPOTS, is the most effi-
cient when compared to others, despite the high number of tasks. PPOTS and
EWOA cost close to each other, but the proposed method is less expensive.
When discussing resource utilization in the scheduling algorithm, SO performs
poorly, but PPOTS and EWOA do quite well. PPOTS has a better and more
optimal resource utilization ratio among these two methods.

Because SO and EWOA algorithms ignore this parameter in their objective
function formulation, their makespan rate is high. In contrast, in the proposed
objective function, waiting time and task processing time are also considered,
whereas in the objective functions of the other two methods, these two factors
are not taken into account. Additionally, PPOTS explores the search space
more thoroughly to find the optimal solution.

6. Conclusion and Future Works

Cloud computing can be greatly improved by optimizing scientific task sched-
uling. Although finding a suitable task scheduling algorithm is very important
for cloud users and providers, most papers fail to offer an effective trade-off
between makespan, resource utilization, and execution cost. In this paper, we
introduce a PPO-based task scheduling algorithm named PPOTS that takes
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Figure 16. Comparison of proposed method with the other
scheduling algorithms.

into account makespan, resource utilization, and execution cost. When com-
pared to WOA, SSA, SHO, GOA, and STOA, the proposed task scheduling
method can improve system makespan, execution cost, and resource utilization
by 15, 28, and 8.25%. Additionally, the PPOTS algorithm has a faster conver-
gence time to find the optimal solution than other meta-heuristic algorithms.
Also, the proposed method compared with two metaheuristic-based scheduling
algorithms in terms of makespan, resource utilization and execution cost. In
future work, we will consider security, scalability, load balancing, and availabil-
ity. Additionally, we intend to improve the PPO algorithm’s efficiency. Two
perspectives can be used to examine the improvements:

(1) From the perspective of task scheduling, including:
• Modify the proposed method so that accept workflow tasks
• Add migration task (or VM) mechanism for load balancing
• Enhance security mechanisms in the environment to ensure reli-

able connectivity for users
(2) From the perspective of the PPO algorithm, including:

• Use reinforcement learning to learn policy of selecting search space
• Set number of individuals in both populations dynamically based

situation of exploring or exploiting the search space
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