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Abstract. Economic and finance time series are typically asymmetric
and are expected to be modeled using asymmetric nonlinear time series

models. The logistic smooth transition autoregressive, LSTAR, model

which is an asymmetric type of the smooth transition autoregressive, is
becoming popular in modeling economic and financial time series.

In this paper, we have considered the logistic smooth transition autore-

gressive model and have estimated unknown parameters based on the
method of moment and modified maximum likelihood method. The per-

formance of the proposed estimation methods is studied by simulation and

is compared with the performance of maximum likelihood estimators. It
shows that for large sample sizes, the modified maximum likelihood esti-

mators usually have the lowest mean square error and bias.

We proposed a LSTAR model to finance rate on consumer installment
loans at commercial banks and conclude that the estimated LSTAR model

based on the modified maximum likelihood method has the lowest value
of MSE.

Keywords: Asymmetric model, LSTAR model, Modified maximum likeli-
hood, Method of moment, Parameter estimation.
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1. Introduction

Nonlinear time series models have recently found widespread application in
the analysis of economics and finance time series. One of the nonlinear time
series models is the smooth transition autoregressive, STAR, model that is able
to capture the movement of some economic variables, which adjusts every mo-
ment due to the behavior of economic agents. Chan and Tong [3] introduced
the smooth transition autoregressive model into time series and used the cumu-
lative function of the standard normal variable as the transition function in the
model. Terasvirta [11] considered the specification, estimation and evaluation
of the STAR model.
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The smooth transition autoregressive model implies the existence of nonlinear
behavior in the time series. The logistic autoregressive model and exponential
autoregressive model are most popular specifications of the STAR model which
have asymmetric and symmetric properties, respectively. The logistic smooth
transition autoregressive model, LSTAR, is characterized by the asymmetric
properties which make it suitable for modeling specific economics and financial
time series, see Yaya and Shitu [14].
The LSTAR model has been successfully applied by Terasvirta and Ander-
son [12] to characterize the different dynamics of industrial production indexes
in a number of OECD countries during expansions and recessions. Feissolle [6]
proposed the Bayesian estimation for nonlinear model by means of Monte Carlo
integration with importance sampling and applied it to the LSTAR model with
an artificial sample. Chan and McAleer [1] investigated the finite sample prop-
erties of maximum likelihood estimation of STAR and STAR-GARCH models
through numerical simulation. Lopes and Salazar [7] proposed a Bayesian ap-
proach to the logistic smooth transition autoregressive model based on the
novel reversible jump Markov chain Monte Carlo (RJMCMC) algorithm.
In nonlinear models such as STAR models, parameter estimation is not en-
tirely straightforward. Calculation of maximum likelihood estimators of STAR
model parameters can be problematic due to computational difficulties. So
likelihood functions are estimated using the numerical methods. Dijk et al. [5]
show that the convergence of the maximum likelihood estimator for STAR
models is sensitive to initial values. The nature of the numerical difficulties
using Monte Carlo simulation is studied by Chan and Theoharakis [2]. They
show that the conventional optimization algorithms do not perform well in lo-
cating the global optimum of the associated likelihood function. Schleer [9]
studied the starting-values for the estimation of vector STAR models based on
a Monte Carlo. Midilic [8] presented a potential solution to these problems
by using iteratively weighted least squares, IWLS, and compared its perfor-
mance with other established algorithms. Saputro et al. [10] estimated logistic
smooth transition autoregressive model parameter based on the Gauss-Newton
method. The estimation of logistic smooth transition autoregressive parameter
using Gauss-Newton method is an algorithm to minimize the sum of squared
residue.
Tiku [13] developed the modified maximum likelihood method based on the
linearization of intractable terms of the log-likelihood function using first-order
Taylor series expansion and applied it to some non-normal time series models.
Chung [4] obtained the modified maximum likelihood estimates by locating an
optimal solution in the reduced parameter space and stated conditions under
which the modified maximum likelihood method gives consistent and asymp-
totically normal estimators. Zamani and Sayyareh [15] have considered the
first-order autoregressive model, where residual terms follow Exponential or
Weibull family. They have derived modified maximum likelihood estimators of
unknown parameters and have computed asymptotic distribution of modified
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maximum likelihood estimators in both stationary and non-stationary models.
In this paper, the logistic smooth transition autoregressive model is considered.
Since the likelihood equations of this model have a nonlinear form and solving
these equations by numerical and optimization methods are sensitive to ini-
tial values, therefore the method of moment and modified maximum likelihood
method are proposed.
The rest of the paper is structured as follows: In Section 2, we estimate the
parameters of the LSTAR model based on the method of moment and modified
maximum likelihood method. In Section 3, the performance of the proposed
estimation methods is studied by simulation. We illustrated our theoretical
results with the analysis of a real dataset in Section 4.

2. LSTAR Model and Estimation Methods

The LSTAR model is defined as follows

yt = α0 + α1yt−1 + (β0 + β1yt−1)
1

1 + exp {−γ(yt−d − c)}
+ εt

= α0 + α1yt−1 + β0zt−d + β1yt−1zt−d + εt,(1)

where

zt−d =
1

1 + exp {−γ(yt−d − c)}
,

yt is the variable of interest, α = (α0, α1) and β = (β0, β1) are autoregressive
parameters and zt−d denotes a continuous function, usually bounded between
0 and 1 and thus allowing for a smooth transition between regimes. The tran-
sition function zt−d causes the nonlinear dynamics in the model. εt’s are in-
dependent of yt−k and zt−d. The transition parameter {yt−d, γ, c} is a slope
of parameter that determines the speed of transition between the two extreme
regimes with low absolute values resulting in slower transition, where yt−d is
the transition variable, γ > 0 is a slope parameter and c is a location parameter.
The value of d(d > 0) is varied in order to improve nonlinearity in the system
when it is not known prior to model estimation, see Terasvirta [11]. The εt’s are
independent and identical distributed random variables that follow the normal
distribution, N(0, σ2). In this section, we estimate unknown parameters based
on the method of moment and modified maximum likelihood method.

2.1. Parameter Estimation based on the Method of Moments. One of
the oldest method of parameter estimation is the method of moments, MM.
Although MMEs may not be the best estimators, they almost always produce
some asymptotically unbiased and consistent estimators. Consider the true
model (1) and let µy,j = E

{
Y j
}

be the jth moment and let µ̃y,j = 1
n

∑n
t=1 y

j
t

be the jth sample moment, which is an unbiased estimator of µy,j . We consider
the usual moment conditions as in the case of the Yule-Walker estimators and
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write:

E {YtYt−k} = α0E {Yt−k}+ α1E {Yt−1Yt−k}+ β0E {Zt−dYt−k}
+ β1E {Yt−1Zt−dYt−k}+ E {εtYt−k}(2)

We linearize the function zt−d using the Taylor expansion of zt−d about γ = 0.
So we have,

zt−d ∼=
1

2
+
γ

4
(yt−d − c),(3)

where ∼= indicates asymptotic equivalence. Substituted (3) in (2) and obtain
E {YtYt−k} as follows

σ(k) = α0µy+α1σ(k−1)+β0

(µy
2

+
γ

4
Γ(d− k)

)
+β1

(
σ(k − 1)

2
+
γ

4
E {Yt−1(Yt−d − c)Yt−k}

)
where σ(k) = E {YtYt−k} and Γ(k) = E {(Yt − µy)(Yt−k − µy)}. For k =
1, · · · , 4, the system of equations can be calculated as follows

σ(1) = α0µy + α1σ(0) + β0

(µy
2

+
γ

4
Γ(d− 1)

)
+ β1

(
σ(0)

2
+
γ

4
E {Yt−1(Yt−d − c)Yt−1}

)
σ(2) = α0µy + α1σ(1) + β0

(µy
2

+
γ

4
Γ(d− 2)

)
+ β1

(
σ(1)

2
+
γ

4
E {Yt−1(Yt−d − c)Yt−2}

)
σ(3) = α0µy + α1σ(2) + β0

(µy
2

+
γ

4
Γ(d− 3)

)
+ β1

(
σ(2)

2
+
γ

4
E {Yt−1(Yt−d − c)Yt−3}

)
σ(4) = α0µy + α1σ(3) + β0

(µy
2

+
γ

4
Γ(d− 4)

)
+ β1

(
σ(3)

2
+
γ

4
E {Yt−1(Yt−d − c)Yt−4}

)
.

This system of equations can be rewritten in matrix notation σ = Σθ, where

σ =


σ(1)
σ(2)
σ(3)
σ(4)

 ,Σ =


µy σ(0)

µy
2 + γ

4 Γ(d− 1) σ(0)
2 + γ

4E {Yt−1(Yt−d − c)Yt−1}
µy σ(1)

µy
2 + γ

4 Γ(d− 2) σ(1)
2 + γ

4E {Yt−1(Yt−d − c)Yt−2}
µy σ(2)

µy
2 + γ

4 Γ(d− 3) σ(2)
2 + γ

4E {Yt−1(Yt−d − c)Yt−3}
µy σ(3)

µy
2 + γ

4 Γ(d− 4) σ(3)
2 + γ

4E {Yt−1(Yt−d − c)Yt−4}



θ =


α0

α1

β0

β1

 .

So θ̃ = Σ̃−1σ̃, where θ̃, Σ̃ and σ̃ are MM estimators of θ, Σ and σ, respectively.
Similarly, the relationship between the variance of yt and the variance of the
residuals is

V ar(Yt) = V ar(θ
′
Y) + V ar(εt) = θ

′
V ar(Y)θ + V ar(εt) = θ

′
Σyθ + V ar(εt).

Therefore

σ̃2
ε = σ̃2

y − θ̃
′
Σ̃yθ̃,
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where y =


1

yt−1

zt−d
yt−1zt−d

 and Σy is the variance and covariance matrix of

y. The estimator of parameters c and γ can be calculated using the Taylor
expansion (3) as follows:

E(Zt−d) ∼=
1

2
+
γ

4
E(Yt−d − c),

so

ȳ = Ẽ {Yt−d} = c̃.

Also,

V ar(Zt−d) =
γ2

16
V ar(Yt−d),

so

γ̃ =
2

s
√

3

where ȳ is the sample mean and s2 is the sample variance of Yt−d. Note that,
Zt−d denotes the logistic distribution, so it has a uniform distribution U(0, 1)
based on the probability integral transformation.

2.2. Modified Maximum Likelihood Estimator of the LSTAR Model.
Consider the true model (1), where εt’s are independent and identical dis-
tributed random variables that follow the normal distribution, N(0, σ2). Ac-
cording to the condition of independence of the residuals, the joint probability
density function, pdf, can be written as the product of the marginal density
function. Thus the joint pdf of Yd+1, ..., Yn given Y1 = y1, · · · , Yd = yd is

f
θ
(yd+1, ..., yn|Y1 = y1, · · · , Yd = yd) =

(
2πσ

2
)−n−d

2 exp

− 1

2σ2

n∑
t=d+1

(
yt − α0 − α1yt−1 − (β0 + β1yt−1)

1

1 + exp
{
−γ(yt−d − c)

})2
 ,

where θ =
(
α0, α1, β0, β1, γ, c, σ

2
)
. To calculate the maximum likelihood

estimates, we obtain the log-likelihood of Yd+1, · · · , yn conditional on Y1 =
y1, · · · , Yd = yd as:

l(θ) = −
(n− d)

2
log
(

2πσ
2
)
−

1

2σ2

n∑
t=d+1

(
yt − α0 − α1yt−1 − (β0 + β1yt−1)

1

1 + exp {−γ(yt−d − c)}

)2

.

The maximum likelihood estimators are obtained by solving the estimating
equations

∂l(θ)

∂σ2
= −

(n− d)

2σ2
+

1

2σ4

n∑
t=d+1

(
yt − α0 − α1yt−1 − (β0 + β1yt−1)

1

1 + exp {−γ(yt−d − c)}

)2

= 0

∂l(θ)

∂α0

=
1

σ2

n∑
t=d+1

(
yt − α0 − α1yt−1 − (β0 + β1yt−1)

1

1 + exp {−γ(yt−d − c)}

)
= 0

∂l(θ)

∂α1

=
1

σ2

n∑
t=d+1

yt−1

(
yt − α0 − α1yt−1 − (β0 + β1yt−1)

1

1 + exp {−γ(yt−d − c)}

)
= 0
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∂l(θ)

∂β0
=

1

σ2

n∑
t=d+1

(
1

1 + exp
{
−γ(yt−d − c)

})(yt − α0 − α1yt−1 − (β0 + β1yt−1)
1

1 + exp
{
−γ(yt−d − c)

}) = 0

∂l(θ)

∂β1
=

1

σ2

n∑
t=d+1

yt−1

(
1

1 + exp
{
−γ(yt−d − c)

})(yt − α0 − α1yt−1 − (β0 + β1yt−1)
1

1 + exp
{
−γ(yt−d − c)

}) = 0

∂l(θ)

∂γ
= − 1

σ2

n∑
t=d+1

(β0 + β1yt−1) (yt−d − c)(yt − α0 − α1yt−1) exp {−γ(yt−d − c)}

× (1 + exp {−γ(yt−d − c)})−2

+
1

σ2

n∑
t=d+1

(β0 + β1yt−1)
2 (yt−d − c) exp {−γ(yt−d − c)} (1 + exp {−γ(yt−d − c)})−3

(4)

∂l(θ)

∂c
=

γ

σ2

n∑
t=d+1

(β0 + β1yt−1) (yt − α0 − α1yt−1) exp {−γ(yt−d − c)} (1 + exp {−γ(yt−d − c)})−2

−
γ

σ2

n∑
t=d+1

(β0 + β1yt−1)2 exp {−γ(yt−d − c)} (1 + exp {−γ(yt−d − c)})−3 .

(5)

Since explicit solutions from the likelihood Equations (4 and 5 ) cannot be ob-
tained, so the modified maximum likelihood method used to estimate unknown
parameters. Define

F1(γ, c, xt−d) = exp {−γxt−d} (1 + exp {−γxt−d})−2

and

F2(γ, c, xt−d) = exp {−γxt−d} (1 + exp {−γxt−d})−3

where xt−d = yt−d − c. The function F1(γ, c, xt−d) can be written as a linear
function using Taylor’s expansion of F1(γ, c, xt−d) about γ = 0, in other words

F1(γ, c, xt−d) ∼= F1(γ, c, xt−d) |γ=0 +F
′
1(γ, c, xt−d) |γ=0 (γ − 0)

= exp {−γxt−d} (1 + exp {−γxt−d})−2 |γ=0

−
(
xt−d exp {−γxt} (1 + exp {−γxt−d})−2 + 2xt−d exp {−2γxt−d} (1 + exp {−γxt−d})−3

)
|γ=0 (γ − 0)

=
1

4
−
(
xt−d

4
−

2xt−d
8

)
γ =

1

4

(6)

and similarly

F2(γ, c, xt−d) ∼= F2(γ, c, xt−d) |γ=0 +F
′
2(γ, c, xt−d) |γ=0 (γ − 0)

= exp {−γxt−d} (1 + exp {−γxt−d})−3 |γ=0

−
(
xt−d exp {−γxt−d} (1 + exp {−γxt−d})−3 − 3xt−d exp {−2γxt−d} (1 + exp {−γxt−d})−4

)
|γ=0 (γ − 0)

=
1

8
−
(
xt−d

8
−

3xt−d
16

)
(γ − 0) =

1

8
+

γ

16
xt−d.

(7)
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The modified maximum likelihood estimators are calculated by substituting
Equations (6 and 7) in Equations (4 and 5) as follows

σ̂2 =
1

n− d

n∑
t=d+1

(
yt − α̂0 − α̂1yt−1 − (β̂0 + β̂1yt−1)

1

1 + exp {−γ̂(yt−d − ĉ)}

)2

α̂0 =
1

n− d

n∑
t=d+1

(
yt − α̂1yt−1 − (β̂0 + β̂1yt−1)

1

1 + exp {−γ̂(yt−d − ĉ)}

)

α̂1 =

∑n
t=d+1 yt−1

(
yt − α̂0 − (β̂0 + β̂1yt−1) 1

1+exp{−γ̂(yt−d−ĉ)}

)
∑n
t=d+1 y

2
t−1

β̂0 =

∑n
t=d+1 (1 + exp {−γ̂(yt−d − ĉ)})−1

(
yt − α̂0 − α̂1yt−1 − β̂1yt−1

1+exp{−γ̂(yt−d−ĉ)}

)
∑n
t=d+1 (1 + exp {−γ̂(yt−d − ĉ)})−2

β̂1 =

∑n
t=d+1 (1 + exp {−γ̂(yt−d − ĉ)})−1

yt−1

(
yt − α̂0 − α̂1yt−1 − β̂0

1+exp{−γ̂(yt−d−ĉ)}

)
∑n
t=d+1 (1 + exp {−γ̂(yt−d − ĉ)})−2

y2
t−1

γ̂ =
1
8

∑n
t=d+1(β̂0 + β̂1yt−1)2(yt−d − ĉ)− 1

4

∑n
t=d+1(yt − α̂0 − α̂1yt−1)(β̂0 + β̂1yt−1)(yt−d − ĉ)

1
16

∑n
t=d+1(β̂0 + β̂1yt−1)2(yt−d − ĉ)2

ĉ =
1
4

∑n
t=d+1(β̂0 + β̂1yt−1)(yt − α̂0 − α̂1yt−1)− 1

16

∑n
t=d+1(β̂0 + β̂1yt−1)2(2 + γ̂yt−d)

γ̂
16

∑n
t=d+1(β̂0 + β̂1yt−1)2yt−d

The modified maximum likelihood estimators have asymptotic properties of
maximum likelihood estimators (such as asymptotic normal distribution), see
Zamani and Sayyareh [15].

3. Simulation Analysis

Consider

yt = α0 + α1yt−1 + (β0 + β1yt−1)
1

1 + exp {−γ(yt−1 − c)}
+ εt

as a true model, where εt’s are independent and identical distributed random
variables that follow the normal distribution, N(0, σ2). The observations are
generated from the LSTAR model with α0 = 0.4, α1 = 0.3, β0 = 0.4, β1 =
−0.5, γ = 2, c = 0.4, σ2 = 1 and d=1. It is assumed that the true model is
known and only the parameters are estimated based on the method of mo-
ment (MM), modified maximum likelihood (MML) and maximum likelihood
(ML) methods. We do m = 104 replications. The results of the mean of the

estimator values and their bias, 1
m

∑m
j=1(θ̂(j) − θ0), and mean square error,

1
m

∑m
j=1(θ̂(j) − θ0)2, are given for different sample sizes, of n=25, 50, 100, 200,
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300, 500, 1000 and are summarized in Tables 1-3, where θ̂(j) denotes the esti-
mated parameter in the jth iteration and θ0 is a true parameter.
In Table 1, we presented the average, across replications, estimates of the pa-
rameters. For all estimators, as the sample size increases, the value of the
estimators is close to the true parameter. It can also be seen that MMLE
converges to the true parameter. For small sample size, maximum likelihood
estimators does not perform well in estimating parameters, especially α1, β0 and
γ. The maximum likelihood estimators of these parameters have the largest
MSE values. The results in Tables 1-3 show that the mean squared error and
bias of the mentioned estimators decreases, when the sample size increases. We
also observe that the maximum likelihood and modified maximum likelihood
estimators usually have the highest and lowest mean square error and bias re-
spectively. Although the modified maximum likelihood estimators for smaller
sample sizes are better than the moment estimators, but as the sample size
increases the obtained values of mean squared error and bias for both methods
become closer. The bias of all estimators converges to zero. In other words,
they are asymptotically unbiased estimators.

4. A Real Data Example

In this section, we consider the finance rate on consumer installment loans
at commercial banks, new autos 48 month loan, and estimate LSTAR model as
proposed model. According to the United States Federal Reserve, the finance
rate on consumer installment loans at commercial banks was 5.15% in May of
2022. This dataset consists of the monthly returns with the sample extending
from February 1992 to May 2022 for a total of n = 202 observations. This
data can be found at https://fred.stlouisfed.org/series/TERMCBAUTO48NS.
We denote the standard form of this dataset by yt, t = 1, ..., 202. Descriptive
statistics of yt is presented in Table 4. It shows that the record high of 17.36
and record low of 4.00 of the finance rate on consumer installment loans at
commercial banks is reached in November 1981 and November 2015, respec-
tively. The unconditional mean is not statistically different from zero and it
has positive skewness and negative the sample excess kurtosis.

The time series plot, qqnorm, the sample autocorrelation function and partial
autocorrelation function of yt dataset are given in Figure 1. It shows that
this dataset follows Normal distribution and there is a correlation between yt
and yt−1. We consider the LSTAR model and estimate parameters of model
based on the proposed methods. The sample is partitioned into two subsam-
ples y1, . . . , ym and ym+1, . . . , yn where m is 198. The subsample y1, . . . , ym is
used as training data and the subsample ym+1, . . . , yn is retained as the vali-
dation data for testing the model. The model is initially fitted on the training
dataset based on the proposed methods of estimation. The fitted model is used
to predict for the observations in a the validation dataset. Table 5 shows the
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Table 1. The values of the estimated parameters of LSTAR
model.

n method α0 = 0.4 α1 = 0.3 β0 = 0.4 β1 = −0.5 γ = 2 c = 0.4 σ2 = 1

25 MM 0.41927 0.23852 0.40360 -0.48980 2.19258 0.47627 0.90507

ML 0.30873 0.13932 0.64883 -0.43147 1.68558 0.48941 0.83998
MML 0.42050 0.23397 0.40273 -0.48673 2.12176 0.47812 0.89929

50 MM 0.40648 0.27193 0.40341 -0.51602 1.79201 0.46850 0.95240
ML 0.37664 0.24695 0.45217 -0.48292 1.70034 0.48859 0.92071

MML 0.40431 0.28088 0.40240 -0.49376 1.92505 0.46737 0.92453

100 MM 0.39477 0.30439 0.40198 -0.51207 1.80235 0.42642 0.98030

ML 0.42277 0.29368 0.41391 -0.51725 1.73469 0.47995 0.96163
MML 0.40303 0.29777 0.40163 -0.51834 1.96683 0.44459 0.97813

200 MM 0.39896 0.30334 0.40122 -0.50992 1.81875 0.41792 0.99340
ML 0.41322 0.30324 0.37167 -0.50989 1.79108 0.47265 0.98404

MML 0.40267 0.29878 0.40118 -0.50859 1.97118 0.43148 0.98930

300 MM 0.39903 0.30265 0.40098 -0.50751 1.83208 0.41661 0.99490

ML 0.40838 0.30224 0.37789 -0.50950 1.79236 0.47174 0.98530

MML 0.40179 0.29968 0.40079 -0.50656 1.99414 0.42652 0.98981

500 MM 0.39923 0.30122 0.40074 -0.50416 1.86230 0.41079 0.99800

ML 0.39838 0.30223 0.40642 -0.50904 1.88551 0.47117 0.99362
MML 0.40004 0.30137 0.40028 -0.50557 2.08210 0.42188 0.99451

1000 MM 0.39926 0.30084 0.39970 -0.50245 1.97215 0.40063 0.99887

ML 0.39865 0.30187 0.40109 -0.50511 1.93383 0.47117 0.99680

MML 0.39991 0.30065 0.39987 -0.50519 2.05280 0.40353 0.99926

estimated value of parameters and their standard error and mean square error,
MSE,

MSE =
1

n

n∑
i=1

(yi − ŷi)2.

Furthermore, to check the normality of êt = yt−ŷt, the Kolmogrov-Smirnov test
is used, with a largely enough p-value, which confirms the normality assumption
of the error terms. The p-value Kolmogrov-Smirnov test, KS, is given in Table
5. Although all p-values are greater than 0.05, but the LSTAR model estimated
by modified maximum likelihood method has the highest p-value. Also, the
estimated LSTAR model based on the modified maximum likelihood method
has the lowest value of MSE.
The value of prediction and mean square error of prediction, MSEh,

MSEh =
1

4

4∑
i=1

(ym+i − ŷm+i)
2
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Table 2. The values of the mean square error

n method α0 α1 β0 β1 γ c σ2

25 MM 0.06581 0.08095 0.05153 0.11257 0.83894 0.05247 0.08129

ML 1.99664 1.35399 13.42616 0.54670 12.09991 0.05382 0.09185

MML 0.06982 0.08178 0.05125 0.11713 0.87334 0.05348 0.08476

50 MM 0.03006 0.03486 0.03429 0.05091 0.87768 0.02561 0.03823

ML 0.67443 0.46151 4.63561 0.23861 1.06530 0.02679 0.04093
MML 0.04729 0.04963 0.03176 0.07329 0.87420 0.02649 0.05743

100 MM 0.02327 0.01522 0.01124 0.02030 0.04828 0.01390 0.02153
ML 0.29267 0.20351 2.03000 0.10221 0.05634 0.01730 0.02126

MML 0.01340 0.01468 0.01065 0.01893 0.03129 0.01300 0.02052

200 MM 0.00541 0.00604 0.00328 0.00627 0.04743 0.01082 0.00964

ML 0.14350 0.09959 0.99320 0.05285 0.05234 0.01120 0.00980
MML 0.00509 0.00601 0.00324 0.00565 0.02022 0.01034 0.00958

300 MM 0.00346 0.00392 0.00165 0.00338 0.03893 0.00961 0.00667
ML 0.09139 0.06330 0.65015 0.03530 0.04888 0.00977 0.00675

MML 0.00310 0.00392 0.00161 0.00257 0.02195 0.00935 0.00662

500 MM 0.00202 0.00182 0.00066 0.00120 0.04932 0.00734 0.00384

ML 0.05654 0.03842 0.40152 0.02169 0.04938 0.00744 0.00389

MML 0.00197 0.00108 0.00063 0.00114 0.04921 0.00718 0.00363

1000 MM 0.00102 0.00090 0.00031 0.00055 0.02251 0.00639 0.00201

ML 0.02714 0.01814 0.18812 0.01066 0.04853 0.00633 0.00201
MML 0.00061 0.00089 0.00029 0.00038 0.01399 0.00590 0.00169

is given in Table 6. It shows that, although the prediction values based on the
proposed methods are close to true values, the estimated LSTAR model based
on the modified maximum likelihood method has the lowest value of MSEh.
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Table 3. The values of bias

n method α0 α1 β0 β1 γ c σ2

25 MM 0.01927 -0.06148 0.00360 0.01920 0.19258 0.07627 -0.09493

ML -0.09127 -0.16068 0.24883 0.06853 -0.21442 0.07741 -0.16002

MML 0.02050 -0.06603 0.00703 0.02327 0.22176 0.07812 -0.10071

50 MM 0.00648 -0.02807 -0.00259 -0.01602 -0.18799 0.06850 -0.04760

ML -0.02336 -0.05305 0.05217 0.01708 -0.20966 0.07659 -0.07929
MML 0.00431 -0.04912 -0.00660 0.01624 -0.20495 0.06737 -0.07547

100 MM -0.00529 0.00439 0.00198 -0.01207 0.16235 0.06642 -0.01969
ML 0.01277 -0.00631 0.03391 -0.01705 -0.19530 0.06995 -0.03836

MML 0.00303 0.00177 -0.00136 -0.01134 -0.13316 0.06459 -0.01186

200 MM -0.00163 0.00134 0.00122 -0.00992 -0.15124 -0.06207 -0.00659

ML 0.01222 0.00324 -0.02832 -0.00589 -0.16891 0.06265 -0.01595
MML -0.00032 -0.00121 -0.00121 -0.00859 -0.04881 0.06148 -0.00659

300 MM -0.00096 0.00065 0.00098 -0.00751 -0.13791 -0.05138 -0.00609
ML 0.00838 0.00024 -0.02210 -0.00150 -0.17763 0.05174 -0.01469

MML 0.00019 -0.00031 -0.00090 -0.00556 -0.00585 0.05052 -0.00608

500 MM -0.00076 0.00012 0.00074 -0.00416 -0.12769 -0.04920 -0.00199

ML -0.00161 -0.00016 0.00642 -0.00104 -0.17448 0.05010 -0.00637

MML 0.00004 0.00007 -0.00071 -0.00357 -0.00489 -0.04811 -0.00148

1000 MM -0.00074 0.00008 -0.00030 -0.00245 -0.10785 0.04163 -0.00113

ML 0.00145 0.00011 -0.00189 -0.00101 -0.11617 0.04517 -0.00320
MML -0.00004 -0.00005 -0.00013 -0.00119 0.00280 0.03353 -0.00074

Table 4. Descriptive statistics for empirical series.

series n Min Median Max ȳ σ̂ S K

yt 202 4.000 8.8150 17.360 0.9214e-16 0.9990 0.4186 -0.3840

Notes:
1. n denotes the number of observations and ȳ denotes the sample mean.
2. σ̂ denotes the sample standard deviation and S denotes the sample
skewness.
3. K denotes the sample excess kurtosis.

Conclusion. In this paper, we considered the asymmetric smooth transition
autoregressive model, LSTAR models. One of the problems in analyzing this
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Figure 1. The time series plot, qqnorm, acf and pacf of the
dataset.

Table 5. The value of estimated parameters based on the ML, MML and
MM methods and their standard errors (in bracket).

Method α̂0 α̂1 β̂0 β̂1 γ̂ ĉ KS MSE

ML -0.0086 0.9976 0.3290 -0.1707 0.1054 1.3255 0.0882 0.0857
(0.0008) (0.1124) (0.0456) (0.0045) (0.2885) (0.0006)

MML -0.1926 0.9032 0.46307 0.0127 1.9525 0.0010 0.4201 0.0206
(0.0007) (0.1121) (0.0449) (0.0003) (0.8845) (0.0001)

MM -0.1452 0.9022 0.2733 0.0192 1.8307 0.0250 0.1405 0.0504
(0.0008) (0.1123) (0.0512) (0.0004) (0.8862) (0.0003)

type of time series models is the estimation of the parameters. Since the like-
lihood equations do not have the explicit solutions, so the numerical methods
are used to estimation of parameters. We proposed the modified maximum



Asymmetric smooth transition autoregressive model... – JMMR Vol. 14, No. 1 (2025) 503

Table 6. The values of prediction and MSEh.

True values -1.1768 -1.3509 -1.2514 -1.1737 MSEh

MLE -1.1451 -1.1510 -1.1570 -1.1629 0.0124

MMLE -1.2239 -1.2535 -1.2803 -1.2045 0.0033

MM -1.1672 -1.1729 -1.1782 -1.1833 0.0093

likelihood estimators which are asymptotically consistent and follow the nor-
mal distribution. Also we proposed method of moment that is unbiased and
consistent. We examine by simulation, the performance of the proposed esti-
mation methods and found that modified maximum likelihood estimator is the
better one for logistic smooth transition autoregressive model. For large sam-
ple sizes, the modified maximum likelihood estimators usually have the lowest
mean square error and bias.
We compare the performance of proposed estimation method for logistic smooth
transition autoregressive model using monthly returns of finance rate on con-
sumer installment loans at commercial banks index from February 1992 to May
2022. The result shows that the estimated LSTAR model based on the modi-
fied maximum likelihood method has the lowest value of MSE.
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