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Abstract. The efficiency of Independent Component Analysis (ICA) al-

gorithms relies heavily on the choice of objective function and optimiza-

tion algorithms. The design of objective functions for ICA algorithms
necessitate a foundation built upon specific dependence criteria. This

paper will investigate a general class of dependency criteria based on

the copula density function. One of the aims of this study is to char-
acterize the independence between two random variables and investigate

their properties. Additionally, this paper introduces a novel algorithm for
ICA based on estimators derived from the proposed criteria. To compare

the performance of the proposed algorithm against existing methods, a

Monte Carlo simulation-based approach was employed. The results of this
simulation revealed significant improvements in the algorithm’s outputs.

Finally, the algorithm was tested on a batch of time series data related

to the international tourism receipts index. It served as a pre-processing
procedure within a hybrid clustering algorithm alongside PAM. The ob-

tained results demonstrated that the utilization of this algorithm led to

improved performance in clustering countries based on their international
tourism receipts index.

Keywords: Amari error, Clustering, Copula, Dependence criteria, Inde-
pendent components analysis, Mutual information.
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1. Introduction

The extraction of efficacious components from a dataset is a primary objec-
tive when employing Independent Component Analysis (ICA). This technique
proves advantageous across a variety of datasets, including those related to
sound, stock markets, and images. ICA is utilized to identify independent com-
ponents comprised of diverse elements. According to Sheikh and Regan [33],
This approach is applied in network analysis for the detection and prediction of
traffic incidents. Based on Lassance et al. [17], it also has been used in finance
for optimal portfolio diversification.
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In the realm of macroeconomics, ICA has been instrumental in identifying
structural autoregressive models, as evidenced by Moneta and Pallante [23].
It has also been applied in the analysis of magnetotelluric sounding data, as
shown by Zhou et al. [39], and in the clustering of wireless sensor network data,
as demonstrated by Shahina and Pradeep Kumar [31].

In the field of image processing, ICA has been used for feature extraction, as
shown by Shang et al. [32]. It has also found extensive application in various
medical fields, including the analysis of brain activities, as demonstrated by
Tabanfar et al. [35], Meng et al. [22], and Jayabal et al. [14]. In the study of
Electroencephalogram (EEG) data, ICA has been employed by Lyu and Fu [21]
and Antony et al. [3]. It has also been used in the analysis of individual molec-
ular characterization, as shown by Rincourt et al. [29], and in the dissociation
of biologically single-layer networks, as demonstrated by Lipshutz et al. [20].
In summary, ICA is a versatile tool that has been applied across a wide range
of fields, demonstrating its utility in extracting independent components from
diverse datasets.

In this study, a novel class of dependency criteria based on a generalized
density-based dependency measure and its copula-based variant has been pro-
posed. The proposed criteria are argued to characterize the independence of
two random variables effectively. Furthermore, an ICA algorithm has been
developed, which is grounded on an estimator derived from the proposed de-
pendency criteria. To assess the efficacy of the introduced methods, they have
been benchmarked against several well-established algorithms. Additionally,
the proposed method has been applied to a batch of time series data as a pre-
processing step in clustering, to demonstrate its practical utility in real-world
scenarios.

This study is organized into nine sections to comprehensively explore its
subject matter. Section 2 delves into the conceptual framework of ICA. Sec-
tion 3 critically examines various ICA approaches centered on the minimization
of mutual information (MI). The subsequent section (Section 4) introduces a
generalized density-based dependency criterion alongside its copula-based iter-
ation. Section 5 focuses on the exploration of the ICA estimator within two
specific scenarios. In Section 6, a novel ICA algorithm is presented, proposing
an innovative approach to the subject. Section 7 then evaluates the perfor-
mance of this suggested methodology through the utilization of Monte Carlo
simulations, employing the average of Amari errors as an evaluative metric.
Section 8 utilizes data encompassing international tourism receipts collected
between 2000 and 2020 from diverse countries to illustrate the methodology’s
application in clustering analysis. Finally, Section 9 concludes this investi-
gation, offering pertinent insights and conclusions derived from the study’s
findings.
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2. Independent Component Analysis

In this investigation, we delve into the concept of ICA. For this study,
consider that xi = (x1i, x2i, . . . , xni)

T , i = 1, 2, ..., d is an n-dimensional vec-
tor. Additionally, a multivariate dataset X = (x1,x2, · · · ,xd) is represented
as an n × d matrix, which is a mixture of unknown independent compo-
nents. Here, n denotes the number of mixtures, and d signifies the number
of dependent components. Each component is time-varying and is defined as
si = (s1i, s2i, . . . , sni)

T , i = 1, 2, ..., d, where n is the number of time steps, and
sij is the time j of components si. Thus, an n × d matrix with independent
components is defined as S = (s1, s2, · · · , sd).

Based on these definitions, the ICA model can be mathematically repre-
sented as X = SA + ε, where A is a d × d mixing coefficients matrix and ε
is a n × d residual matrix with E[ε] = 0. Note that in the ICA model, both
matrices S and A are unknown and the goal of ICA is to estimate A to get
the estimation of S. Let Â and Ŝ be the estimations of A and S, respectively.
Since E[ε] = 0, thus we should have X ' ŜÂ. Therefore, the goal of ICA is

to find a separating matrix W = Â−1, such that the reconstructed matrix is
defined as Ŝ = XW .

In the process of modeling, the steps of centralization and whitening should
be applied before ICA. This investigation reveals that when centralized data
undergoes whitening, it can be defined by a whitening matrix denoted as Z =
QXc computed with Q = Λ−1D′, where Λ represents a diagonal matrix and D
denotes an eigenvector matrix calculated from the covariance of Xc. So, after
the whitening phase, the resulting transformation is defined as Z = QXc =
QSA.

The estimation of independent components is achieved through various meth-
ods, as expounded in the scientific literature. One noteworthy approach, in-
vestigated by Hyvärinen and Oja [13], involves maximizing non-Gaussianity
through negative entropy. Additionally, an alternative method entails estimat-
ing the W matrix using the maximum likelihood approach, offering diverse av-
enues for the extraction of independent components. Moreover, the minimiza-
tion through Mutual Information (MI) criterion, as proposed by Hyvärinen [14],
has emerged as one of the most widely adopted methods in this domain. Con-
sequently, numerous algorithms designed for ICA are rooted in the principle of
minimizing MI to facilitate independent components estimation, as emphasized
by Langlois et al. [16].

Some of the most useful and applicable algorithms include the FastICA al-
gorithm based on MI minimization (Hyvärinen [14]), the Infomax algorithm
relying on the maximum likelihood method (Lee et al. [19]), the JADE al-
gorithm founded on maximizing kurtosis (Cardoso [6]), RADICAL algorithm
based on the Kullback-Leibler criterion (Learned-Miller and Iii [18]), HICA al-
gorithm utilizing the copula function of Hoeffding’s criterion (Rahmanishamsi



530 F. Asadi, H. Torabi, H. Nadeb

et al. [27]), and RLICA algorithm employing the copula function of the squared
loss MI criterion (Rahmanishamsi and Dolati [26]).

3. Some ICA Approaches Based on Minimizing MI

In this section, various ICA approaches centered on the minimization of
Mutual Information (MI) are explored. It is deduced that when a dependency
criterion characterizes the independence of random variables, it proves to be
highly fruitful. To illustrate this, consider X1 and X2 as two random variables
with the joint distribution function F , joint density function f , and marginal
density functions f1 and f2, respectively. The MI criterion between X1 and X2

is defined by the following equation:

MI(X1, X2) =

∫∫
log

(
f(x1, x2)

f1 (x1) f2(x2)

)
dF (x1, x2).

As the Mutual Information (MI) value approaches zero under conditions of
variable independence, in ICA, it is observed that the matrix W tends to be
close to zero (Hyvärinen [14]).

In the ICA approach, where reliance on the MI criterion is pivotal, achieving
precise MI estimation is of utmost importance. However, this is a challenging
and time-consuming process. Moreover, it has been observed that this intri-
cate estimation procedure can diminish the accuracy of independent component
estimation. Recognizing these challenges, Suzuki and Sugiyama [34] have pro-
posed the LICA algorithm, which is founded on a squared-loss variant of MI
denoted as Is. The formulation of Is is represented by the following equation,
designed to address some of the aforementioned challenges:

Is(X1, X2) =
1

2

∫∫ (
f(x1, x2)

f1 (x1) f2(x2)
− 1

)2

f1(x1)f2(x2)dx1dx2,

where the estimation of the ratio f(x1,x2)
f1(x1)f2(x2) , denoted as the estimation of Is,

serves to alleviate the challenging task of density estimation.
Furthermore, Chen et al. [9] delved into the COPICA method for exploring

independent components. Copulae were employed in the p-dimensional data
model, and independent components were identified by optimizing the copula
parameters. Additionally, Abayomi et al. [1] proposed an alternative copula
approach with the objective of orthogonalizing a measure of multivariate dis-
persion, resulting in an orthogonal basis for a multivariate data set. This study
demonstrated that the flexibility of the copula approach permits parameteri-
zations of non-Gaussian, non-monotone dependence, as defined below:

MIC(X1, X2) =

∫∫
log(c(u, v))dC(u, v),

where C denotes the copula corresponding to the joint distribution function

F and c(u, v) = ∂C(u,v)
∂u∂v represents its density.
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Moreover, Keziou et al. [15] introduced a novel blind source separation ap-
proach based on the modified Kullback-Leibler divergence between copula den-
sities, applicable to both independent and dependent source component signals.
This method presents a significant advantage in its inherent adaptability to the
separation of mixtures involving dependent source components.

Additionally, Rahmanishamsi and Dolati [26] introduced a dependency cri-
terion called squared-loss Mutual Information (SMI), denoted by SMI, by a
combination of ideas from MI and Is, which is defined by the equation below:

SMI(X1, X2) =

∫∫ (
f(x1, x2)

f1 (x1) f2(x2)
− 1

)2

f1(x1)f2(x2)dx1dx2,

with its copula-based version, denoted by SMIC defined as below:

(1) SMIC(X1, X2) =

∫ 1

0

∫ 1

0

(c(u, v)− 1)
2

dudv.

In these cases, researchers no longer encounter the challenge of estimating the
marginal and joint density functions; instead, it is only necessary to estimate
the copula density function.

4. Proposed Dependency Criterion

This section introduces a broad class of dependence criteria. Notably, when
the criteria equal zero, they signify the independence of two random variables.
To illustrate this, let’s consider two random variables denoted by X1 and X2,
with a joint distribution function denoted by F . The marginal distribution
functions are defined as F1 and F2. The following condition is assumed:

A1 : g : R+ → R+, is decreasing for x < 1, increasing for x ≥ 1, and
g(1) = 0.

A2 : H(x1, x2) is an arbitrary absolutely continuous joint distribution
function.

Under this framework, a generalized density-based dependency criterion,
represented by GDDCg,H , is derived from the following equations:

GDDCg,H(X1, X2) =

∫∫
g

(
f(x1, x2)

f1(x)f2(x)

)
dH(x1, x2).

It is evident that when the random variables X1 and X2 are independent,
these divergences disappear. Let’s denote C as a copula function corresponding
to the joint distribution function F with a copula density function c, and C∗

represent an arbitrary absolutely continuous copula. Therefore, the copula-
based version of GDDCg,H , denoted by GDDCg,C∗ , is proposed as

(2) GDDCg,C∗(X1, X2) =

∫ 1

0

∫ 1

0

g (c(u, v)) dC∗(u, v).
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In this context, two specific cases for C∗ can be considered, namely C∗(u, v) =
C(u, v) and the independent copula C∗(u, v) = Π(u, v) = uv. As demon-
strated in Equations (1) and (2), it is clear that if g(x) = (x − 1)2, then

GDDCg,Π(X1, X2) = SMIC(X1, X2).

Theorem 4.1. Let X1 and X2 be two continuous random variables
where are linked through a copula C with the corresponding density c,
and C∗ be an arbitrary absolutely continuous copula.

(i) GDDCg,C∗(X1, X2) = 0, if and only if X1 and X2 are independent.
(ii) GDDCg,Π(X1, X2) = GDDCg,Π(X2, X1).

(iii) GDDCg,C and GDDCg,Π are invariant under monotone transforma-
tions.

Proof. (i) Let X1 and X2 be independent. Thus, the copula function C
corresponding to (X1, X2) is of the form C(u, v) = uv with the density

copula function c(u, v) = ∂2C(u,v)
∂u∂v = 1 for all (u, v) ∈ [0, 1]2. Therefore,

Condition A1 implies that GDDCg,C∗(X1, X2) = 0. Conversely, sup-
pose that GDDCg,C∗(X1, X2) = 0 and A ⊆ [0, 1]2 be a set such that
λ2(A) = 1, where λ2 denotes a two-dimensional Lebesgue measure
on [0, 1]2. By the nature of copula, we know that C∗(u, v) is a bi-
variate continuous distribution function on [0, 1]2. On the other hand

g(x) ≥ 0 for all x ∈ R+. Thus, from
∫ 1

0

∫ 1

0
g (c(u, v)) dC∗(u, v) = 0, we

conclude that g (c(u, v)) = 0 for all (u, v) ∈ A. Therefore, it implies
that c(u, v) = 1 for all (u, v) ∈ A. Hence, the proof is completed.

(ii) The desired result clearly holds.
(iii) To prove we use Theorem 2.4.4 of Nelsen [25]. Let ψ1(X1) and ψ2(X2)

be two transformations on X1 and X2. If ψ1 and ψ2 are both increas-
ing real-valued functions, then Cψ1(X1),ψ2(X2)(u, v) = C(u, v), which
implies cψ1(X1),ψ2(X2)(u, v) = c(u, v). If ψ1 and ψ2 are both decreasing
real-valued functions, then Cψ1(X1),ψ2(X2)(u, v) = u+v−1+C(1−u, 1−
v), which implies cψ1(X1),ψ2(X2)(u, v) = c(1− u, 1− v). If ψ1 is increas-
ing and ψ2 is decreasing, then Cψ1(X1),ψ2(X2)(u, v) = v − C(u, 1 − v),
which implies cψ1(X1),ψ2(X2)(u, v) = c(u, 1−v). Also, if ψ1 is decreasing
and ψ2 is increasing, then Cψ1(X1),ψ2(X2)(u, v) = u−C(1−u, v), which
implies cψ1(X1),ψ2(X2)(u, v) = c(1 − u, v). By substituting in (2), we
have

GDDCg,C(ψ1(X1), ψ2(X2)) = GDDCg,C(X1, X2),

GDDCg,Π(ψ1(X1), ψ2(X2)) = GDDCg,Π(X1, X2),

where complete the proof.
�
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5. Estimation of the Proposed Dependency Criterion

To propose a dependency criterion estimation, we need a random sample.
So, let (X11, X21), . . . , (X1n, X2n) denote a random sample of size n from a
bivariate distribution function F with the associated copula C and the corre-
sponding copula density c. For i = 1, 2, j = 1, . . . , n, let Rij =

∑n
k=1 I[Xik≤Xij ]

be the rank of Xij , where I[.] is the indicator function. Then Uij =
Rij

n+1 is
defined based on this argument. In this arrangement, we obtain the random
sample (U11, U21), . . . , (U1n, U2n). It is noteworthy that using n+ 1 in the de-
nominator of Uij ensures that Uij is in the range of 0 to 1. Moreover, based
on Wand and Jones [36], the kernel estimator of the copula density c is given
by the following equation with bandwidth h > 0, where k is a given bivariate
kernel:

ĉ (u, v) =
1

nh2

n∑
j=1

k

(
u− U1j

h
,
v − U2j

h

)
, (u, v) ∈ [0, 1]2.

Chen [8] introduced the univariate beta kernel density estimator to estimate
a density function with compact support. Charpentier et al. [7] used this idea
to estimate a bivariate copula density as the product of the beta kernels as
follows:

ĉ (u, v) =
1

nh2

n∑
j=1

κ

(
U1j ;

u

h
+ 1,

1− u
h

+ 1

)

×κ
(
U2j ;

v

h
+ 1,

1− v
h

+ 1

)
, (u, v) ∈ [0, 1]2,(3)

where κ(u;α, β) is defined as the density function of the beta distribution func-
tion with parameters α and β at point u.

According to Nagler [24], Proposition 3.2, if n → ∞, for all (u, v) ∈ (0, 1),

then Bias(ĉ(u, v))→ 0 and V ar(ĉ(u, v))→ 0. That is, ĉ(u, v)
p→ c(u, v).

Based on this, the beta kernel has two leading advantages. One is that it
matches the compact support of the object to be estimated. The other is that
it has flexibility in form and changes the smoothness naturally as we move away
from the boundaries. As a result, beta kernel estimators are naturally free of
boundary bias and they produce estimates with a smaller variance (Charpentier
et al. [7]).

Bouezmarni and Rolin [5] proved that even under the condition that the
density is unbounded at the boundaries, the beta kernel density estimator is
consistent. This property may also hold in the copula density estimation prob-
lem. For instance, the bivariate Gaussian copula density is unbounded at the
corners (0,0) and (1,1). Thus, the beta kernels are suitable candidates to con-
struct well-behaved nonparametric estimators for a copula density.
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Furthermore, the performances of the beta kernel estimators are very similar
to those of the reflection estimator. They do not show boundary effects only
when the density satisfies some conditions. Therefore, the beta kernel estimator
is free of the boundary bias problem (Zhang and Karunamuni [38]).

Finally, we can obtain the estimators for GDDCg,C and GDDCg,Π as

ĜDDCg,C(X1, X2) =

∫ 1

0

∫ 1

0

g (ĉ(u, v)) ĉ(u, v)dudv,

ĜDDCg,Π(X1, X2) =

∫ 1

0

∫ 1

0

g (ĉ(u, v)) dudv,(4)

where ĉ(u, v) was presented in (3).

6. The Proposed ICA Algorithm Based on ĜDDCg,C and ĜDDCg,Π

In this section, we delve into the fundamental processes of several novel ICA

algorithms. These algorithms denoted as ĜDDCg,C and ĜDDCg,Π leverage
distinct estimators, namely GDDCICAg,C and GDDCICAg,Π for GDDCg,C
and GDDCg,Π.

Let us begin by considering a d-dimensions random vector, denoted as X,
and a matrix W , representing the transformation matrix. The objective of ICA
algorithms is to determine the optimal W matrix, such that the components
Y1, Y2, . . . , Yd of a new random vector, Y , can be expressed as Y = XW , while
minimizing the statistical dependency. This optimization is achieved through
the formulation of a contrast function, denoted as f , which quantifies the degree
of dependency among the components. Consequently, the ICA problem can be
defined as the minimization of this contrast function.

In the context of statistical independence within the ICA framework, pair-
wise independence serves as a sufficient measure (Comon [10]). Hence, solving a
d-dimensional ICA problem entails successively addressing 2-dimensional ICA
subproblems. In practice, a d-dimensional linear transformation can be de-
scribed by a d× d orthogonal matrix, denoted as R, which can be decomposed
into a series of 2-dimensional rotations. Utilizing this insight, the transforma-
tion matrix can be formulated as R =

∏
16i6j6dRij(θ) = [rij(θ)]d×d, where for

i 6= j, rii(θ) = rjj(θ) = cos(θ) and rij(θ) = −rji(θ) = sin(θ), and for k 6= i, j,
rkk = 1, with the other entries 0.

According to this equation, each matrix Rij(θ) defines a rotation matrix for
a specific pair of dimensions i and j. The concept of searching for the optimal
rotation angle shares similarities with the RADICA Algorithms proposed by
Learned-Miller and Iii [18], wherein the corresponding demixed dataset aims
to minimize its Generalized Independent Component Analysis (GICAg).

The general process of the algorithm for the 2-dimensional case (i.e., d = 2)
is summarized as follows:
Algorithm 6.1.
Input: A matrix X ∈ Rn×2 where the rows are mixed centered components.
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Procedure for calculating GDDCICAg,C and GDDCICAg,Π :

(1) Make the matrix X white, so that Y = X×Z ′, where Z is a whitening
matrix.

(2) Define ĜDDCg,C(S(θ)) or ĜDDCg,Π(S(θ)) as function of θ, where
S(θ) = Y ×R(θ), such that R(θ) is an orthogonal rotation matrix as

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

(3) Minimize the function GDDCg,C∗(X1, X2) over θ ∈ [−π/2, π/2] and
set
θ0 =argmin

θ
ĜDDCg,C(S(θ)) or θ0 =argmin

θ
ĜDDCg,Π(S(θ)).

Output: Unmixing Ŵ = R
′
(θ0) × Z, and matrix of source signal estimates

Ŝ = Y ×R(θ0).

7. Simulation Study

To compare the performance between GDDCICAg,C and GDDCICAg,Π rather
to FastICA, Infomax, JADE, RADICAL, HICA and RLICA, the Monte-Carlo
simulation were conducted in R software package. The study employed the set
of 18 distinct one-dimensional densities as provided by Bach and Jordan [4] in-
clude student-t, uniform, exponential, and a mixture of two Laplace densities,
as well as symmetric and nonsymmetric Gaussian mixtures. 1 illustrates the
density plots of the various distributions mentioned above. All ICA algorithms
share the objective of extracting an unmixing matrix denoted as W , which is
applied to the matrix X to recover estimations of independent components.
The Amari error, introduced by Amari et al. [2], was employed to compare the
performances of these algorithms. In this context, the mixing matrix is denoted
by A. Therefore, the true unmixing matrix, with the estimator, is defined as
W = A−1 . The calculation of the Amari error is derived through

Amari error =
1

2d(d− 1)

d∑
i,j=1

(
|aij |

maxi |aij |
+

|aij |
maxj |aij |

)
− 1

d− 1
,

where aij = [ŴA]ij denoted as an estimated unmixing matrix Ŵ . It is notable
that this metric always takes values between 0 and d − 1. It would be equal

to zero if the estimated and true unmixing matrices, denoted as Ŵ and W
respectively, indicate similar components. Additionally, it is invariant to the

permutation and scaling of the columns of A and Ŵ .
For the simulation, 2-dimensional data with sizes n = 1000 and n = 1500

were utilized along with the mixing matrix A =

(
U1 U2

U3 U4

)
, where Ui, i =

1, 2, 3, 4 are independently follow a uniform distribution over (0, 2). In the
process the average of the Amari errors of the methods FastICA, Infomax,
JADE, RADICAL, HICA, RLICA, GDDCICAg,C and GDDCICAg,Π by 120
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replications of their corresponding algorithms were obtained. In GDDCICAg,C

and GDDCICAg,Π the following functions as some special cases of the function
g in (4) were considered:

g1(x) =
(xc1 − 1)2

x2c1 + 1
, g2(x) = ec2(xc∗2−1) − c2(xc

∗
2 − 1)− 1,

g3(x) = − ln(xc3) + xc3 − 1, g4(x) = xc4 ln(xc4)− xc4 + 1,

where c1, c2, c∗2, c3 and c4 have represented some real values.
So, the ϕ(x) denotes the generator of an Archimedean copula. Definition

4.1.1 of Nelsen [25] implies that it is strictly decreasing over [0,∞) and ϕ(1) = 0.
Therefore, the generators of some of the well-known Archimedean copulas,
including Gumbel-Hougaard denoted by gGH, Gumbel-Barnett denoted by gGB,
Clayton denoted by gC, and Joe denoted by gJ is occured.

gGHi(x) = ((− ln(x))c5)
2
, c5 ∈ [1,∞),

gGBi(x) = (ln (1− c6 ln(x)))
2
, c6 ∈ (0, 1],

gCi
(x) =

(
x−c7 − 1

c7

)2

, c7 ∈ [−1,∞),

gJ(x) = (− ln (1− (1− x)c8))
2
, c8 ∈ [1,∞),

where i = 1, 2, 3.
The results investigate that GDDCICAg1,C with c1 = 2, GDDCICAg2,C

with (c2, c
∗
2) = (−0.5, 1), GDDCICAg3,Π with c3 = −0.5, and GDDCICAg4,Π

with c4 = −0.5 represent good performances. Also GDDCICAgGH1 ,C
and

GDDCICAgGH1
,Π, with c5 = 1, GDDCICAgGH2

,C and GDDCICAgGH2
,Π, with

c5 = 2, GDDCICAgGH3
,C and GDDCICAgGH3

,Π, with c5 = 3, GDDCICAgGB1
,C

and GDDCICAgGB1
,Π, with c6 = 0.5, GDDCICAgGB2

,C and GDDCICAgGB2
,Π,

with c6 = 0.7, GDDCICAgGB3 ,C
and GDDCICAgGB3 ,Π

, with c6 = 0.9,
GDDCICAgC1 ,C

and GDDCICAgC1 ,Π
, with c7 = −0.5, GDDCICAgC2 ,C

and
GDDCICAgC2

,Π, with c7 = −1.5, GDDCICAgC3
,C and GDDCICAgC3

,Π, with
c7 = 0.5, and GDDCICAgJ,C and GDDCICAgJ,Π, with c8 = 1 represents fruit-
ful outputs.

The Amari errors averages for n = 1000 and n = 1500 samples are reported
in Tables 1 and 2 respectively. As a results, for n = 1000, each various types
of GDDCICAg,C and GDDCICAg,Π outperform their competitors in 13 out of
cases. Also for n = 1500 various types of GDDCICAg,C and GDDCICAg,Π in
11 out of 18, the results were better. For n = 1000, the JADE and RADICAL
methods outperform in 2 out of 18 cases. Also for n = 1500, the JADE method
outperforms in 3 cases, the RADICAL method outperforms in 2 out of 18 cases,
the results have shown better performances than others.

The average of all Amari errors on all distributions (a) to (r) reported at
last rows in Tables 1 and 2. It could be concluded that for n = 1000 the
GDDCICAg1,C , GDDCICAg2,C , GDDCICAg3,Π, GDDCICAg4,Π, GDDCICAgC3

,Π,
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GDDCICAgGH1
,Π, GDDCICAgGH2

,Π , and GDDCICAgGH3
,Π are the best tech-

niques in terms of the average of the Amari errors in all distributions. Also,
we see that for n = 1500 the GDDCICAgC2

,C is the best technique in terms of
the average of the Amari errors in all distributions.

Indeed, two random selected distributions average of Amari errors calcula-
tions which reported in the last line of Tables 1 and 2 showed that for n = 1000
and n = 1500, the Infomax and JADE methods perform well.

Also to more insights, performances evaluation for all methods in different
classes of distributions was done by average of Amari errors in each class. The
classes on unimodal distributions (a, b, d, e, i, l, o, r), multimodal distributions
(f, g, j, m, p), and transitional distributions (c, h, k, n, q) have considered as
an elementary perspective. But in the progressive perspective, the class of
symmetric distributions (a, b, c, d, f, g, h, i, m, n, o), and nonsymmetric
distributions (e, j, k, l, p, q, r) have considered in the second view and also the
class of positive kurtosis distributions (a, b, d, e, f), and negatively kurtosis
distributions (c, g, h, i, j, k, l, m, n, o, p, q, r) were considered in the third view.
In each step, the classes are a partition for the set including all distributions.
The results are summarized in Table 3.

It is illustrated that, for n = 1000 in the symmetric, multimodal, and nega-
tively kurtosis classes, the GDDCICAgC2

,C is the best and the GDDCICAgGH3
,Π,

in the symmetric, unimodal, and negatively kurtosis classes, has the best per-
formances. For n = 1500 in all classes except for the transitional class, the
GDDCICAg1,C and GDDCICAgGH3

,Π are the best. Also, the GDDCICAgC3
,Π

is the best in all classes except for the positive kurtosis classes. Generally,
GDDCICAg,C and GDDCICAg,Π, in terms of the average of the Amari errors,
have the best performances in symmetric and negative kurtosis classes.

8. Illustrative Data Analyses

Due to the identification of homogeneous structures within the data and the
objective of maximizing within-group similarities while maximizing between-
group differences, clustering, particularly time series clustering, emerges as an
effective and appealing method for generating valuable insights across various
fields. Furthermore, one of the primary aims in employing all ICA algorithms,
despite their inherent complexity and unknown details, is the extraction of in-
dependent components from a set of mixed components. Consequently, the
algorithm GDDCICAg,C and algorithm GDDCICAg,Π can be utilized as a pre-
processing stage for time series data in clustering applications, facilitating the
identification of the block dependencies between time series. Indeed, the uti-
lization of ICA not only enables more suitable clustering of time series data but
also provides valuable insights into common features shared among the time
series. This pre-processing technique creates new components from sources,
which contain sufficient information about the trend of the time series. So, the
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Table 1. Averages of Amari errors for d = 2 and n = 1000 samples

with 120 replications for each distribution (a) to (r). The best (smallest)

entry of our functions in each row is boldfaced.

distributionFastICAInfomax JADE RADICAL HICA RLICA g1, C g2, C g3, Π g4,Π
a 0.5022 0.5022 0.4971 0.5069 0.4936 0.4962 0.4959 0.4999 0.4913 0.4963
b 0.5125 0.5125 0.5020 0.5163 0.4993 0.5072 0.4980 0.5131 0.5013 0.5102
c 0.5291 0.5291 0.5299 0.5301 0.5308 0.5352 0.5337 0.5326 0.5258 0.5303
d 0.5231 0.5232 0.5047 0.5047 0.5154 0.5009 0.4947 0.5093 0.4999 0.4998
e 0.5385 0.5366 0.5374 0.5383 0.5451 0.5441 0.5433 0.5274 0.5360 0.5427
f 0.5346 0.5345 0.5384 0.5379 0.5398 0.5351 0.5306 0.5371 0.5372 0.5355
g 0.5326 0.5326 0.5341 0.5326 0.5332 0.5323 0.5345 0.5327 0.5312 0.5312
h 0.5259 0.5259 0.5316 0.5251 0.5254 0.5379 0.5257 0.5396 0.5357 0.5295
i 0.5311 0.5315 0.5305 0.5185 0.5375 0.5220 0.5207 0.5159 0.5216 0.5180
j 0.5383 0.5232 0.5433 0.5324 0.5371 0.5311 0.5356 0.5365 0.5300 0.5266
k 0.5241 0.5241 0.5182 0.5186 0.5252 0.5218 0.5184 0.5281 0.5247 0.5247
l 0.5186 0.5136 0.5183 0.5162 0.5162 0.5142 0.5114 0.5113 0.5195 0.5139
m 0.5215 0.5214 0.5203 0.5140 0.5007 0.5060 0.5006 0.5039 0.5142 0.5131
n 0.4779 0.4789 0.4656 0.4654 0.5303 0.4705 0.4692 0.4783 0.4675 0.4693
o 0.5020 0.5020 0.4962 0.5048 0.5081 0.5062 0.4971 0.5007 0.5030 0.5044
p 0.5101 0.5118 0.5124 0.5092 0.5093 0.5137 0.5155 0.5130 0.5118 0.5135
q 0.5022 0.5022 0.4971 0.5069 0.4936 0.4962 0.4959 0.4999 0.4913 0.4963
r 0.5237 0.5236 0.5231 0.5329 0.5083 0.5128 0.5000 0.5020 0.5216 0.5170

mean 0.5193 0.5183 0.5167 0.5173 0.5194 0.5157 0.5123 0.5156 0.5146 0.5151
rand 0.4814 0.4768 0.4812 0.4935 0.4883 0.4828 0.4866 0.4933 0.4900 0.4917

distribution gC1
, C gC2

, C gC3
, C gC1

,Π gC2
,Π gC3

,Π gGH1
, CgGH2

, CgGH3
, CgGH1

,Π

a 0.5006 0.5045 0.4955 0.5017 0.5002 0.4861 0.4977 0.4970 0.4991 0.4968
b 0.5109 0.5058 0.5095 0.5092 0.5102 0.5057 0.5135 0.5050 0.5091 0.5053
c 0.5379 0.5461 0.5393 0.5332 0.5360 0.5332 0.5382 0.5313 0.5286 0.5306
d 0.5109 0.5111 0.5099 0.5016 0.5066 0.5018 0.5094 0.4926 0.5020 0.5045
e 0.5391 0.5310 0.5459 0.5431 0.5406 0.5471 0.5380 0.5318 0.5442 0.5360
f 0.5366 0.5342 0.5382 0.5352 0.5355 0.5327 0.5364 0.5392 0.5353 0.5334
g 0.5264 0.5313 0.5284 0.5308 0.5278 0.5286 0.5335 0.5381 0.5305 0.5330
h 0.5310 0.5288 0.5356 0.5429 0.5315 0.5268 0.5336 0.5324 0.5316 0.5320
i 0.5250 0.5210 0.5332 0.5292 0.5206 0.5301 0.5078 0.5260 0.5170 0.5160
j 0.5297 0.5344 0.5413 0.5294 0.5327 0.5285 0.5348 0.5299 0.5397 0.5298
k 0.5236 0.5264 0.5238 0.5200 0.5216 0.5217 0.5239 0.5336 0.5242 0.5235
l 0.5112 0.5089 0.5164 0.5170 0.5158 0.5182 0.5174 0.5236 0.5177 0.5152
m 0.4931 0.5153 0.5049 0.5107 0.5053 0.5008 0.5105 0.5013 0.4987 0.5150
n 0.4931 0.5153 0.5049 0.5107 0.5053 0.5008 0.5105 0.5013 0.4987 0.5150
o 0.5041 0.5110 0.4970 0.5054 0.5077 0.5010 0.4965 0.5216 0.5077 0.5050
p 0.5159 0.5161 0.5137 0.5195 0.5150 0.5129 0.5145 0.5114 0.5168 0.5127
q 0.5006 0.5045 0.4955 0.5017 0.5002 0.4861 0.4977 0.5139 0.5043 0.4968
r 0.5006 0.5045 0.4955 0.5017 0.5002 0.4861 0.4977 0.5139 0.5043 0.4968

mean 0.5158 0.5172 0.5175 0.5173 0.5162 0.5132 0.5163 0.5167 0.5169 0.5153
rand 0.4871 0.4789 0.4923 0.4900 0.4872 0.4895 0.5004 0.4955 0.5037 0.4943

distributiongGH2
,ΠgGH3

,ΠgGB1
, C gGB2

, C gGB3
, CgGB1

,ΠgGB2
,ΠgGB3

,Π gJ, C gJ, Π

a 0.4934 0.4912 0.5081 0.5088 0.4957 0.4872 0.4936 0.4954 0.4982 0.4888
b 0.5079 0.5057 0.5116 0.5111 0.5132 0.5095 0.5088 0.5131 0.5160 0.5104
c 0.5298 0.5299 0.5361 0.5382 0.5304 0.5384 0.5312 0.5501 0.5306 0.5370
d 0.4933 0.4962 0.5005 0.5050 0.5064 0.5076 0.5040 0.5024 0.5002 0.5059
e 0.5450 0.5372 0.5328 0.5641 0.5583 0.5429 0.5640 0.5574 0.5397 0.5470
f 0.5315 0.5361 0.5330 0.5341 0.5328 0.5371 0.5338 0.5308 0.5331 0.5347
g 0.5368 0.5391 0.5276 0.5337 0.5305 0.5312 0.5325 0.5327 0.5339 0.5303
h 0.5286 0.5269 0.5389 0.5317 0.5341 0.5261 0.5256 0.5322 0.5345 0.5315
i 0.5127 0.5168 0.5198 0.5244 0.5200 0.5274 0.5203 0.5184 0.5233 0.5179
j 0.5265 0.5280 0.5334 0.5324 0.5486 0.5302 0.5305 0.5474 0.5261 0.5291
k 0.5196 0.5236 0.5275 0.5267 0.5271 0.5275 0.5238 0.5263 0.5256 0.5239
l 0.5209 0.5161 0.5127 0.5125 0.5100 0.5163 0.5187 0.5181 0.5196 0.5140
m 0.5087 0.4906 0.4983 0.5094 0.5083 0.5147 0.5088 0.5051 0.5067 0.5066
n 0.4720 0.4655 0.4722 0.4657 0.4701 0.4720 0.4745 0.4730 0.4768 0.4790
o 0.5093 0.5124 0.5128 0.5100 0.5063 0.5069 0.5044 0.5092 0.5159 0.4986
p 0.5146 0.5127 0.5154 0.5174 0.5155 0.5149 0.5149 0.5134 0.5098 0.5133
q 0.4934 0.5063 0.5081 0.5088 0.4957 0.4872 0.4936 0.4954 0.4982 0.4888
r 0.5169 0.5039 0.5056 0.5057 0.5111 0.5163 0.5129 0.5159 0.5077 0.5213

mean 0.5145 0.5132 0.5164 0.5189 0.5175 0.5163 0.5164 0.5187 0.5164 0.5155
rand 0.4983 0.5079 0.4859 0.4896 0.4849 0.4884 0.4909 0.4900 0.4798 0.4897
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Table 2. Averages of Amari errors for d = 2 and n = 1500 samples

with 120 replications for each distribution (a) to (r). The best (smallest)

entry of our functions in each row is boldfaced.

distributionFastICAInfomax JADE RADICAL HICA RLICA g1, C g2, C g3,Π g4, Π
a 0.5251 0.5250 0.5220 0.5311 0.5352 0.5240 0.5272 0.5219 0.5289 0.5191
b 0.4913 0.4915 0.4997 0.5015 0.4988 0.4993 0.5024 0.4998 0.5051 0.5017
c 0.5180 0.5182 0.5182 0.5197 0.5147 0.5193 0.5197 0.5097 0.5190 0.5123
d 0.5078 0.5079 0.5092 0.5149 0.5118 0.5102 0.5179 0.5090 0.5147 0.5149
e 0.4988 0.4988 0.4998 0.5040 0.5091 0.5103 0.5096 0.5090 0.5033 0.4944
f 0.4737 0.4736 0.4727 0.4780 0.4732 0.4779 0.4814 0.4737 0.4855 0.4878
g 0.5351 0.5352 0.5355 0.5326 0.5402 0.5413 0.5303 0.5350 0.5324 0.5370
h 0.5057 0.5059 0.5154 0.5026 0.5071 0.5087 0.5067 0.5109 0.5079 0.5100
i 0.5316 0.5350 0.5314 0.5264 0.5202 0.5203 0.5232 0.5280 0.5237 0.5285
j 0.5005 0.4994 0.5051 0.5244 0.5041 0.5062 0.5149 0.5026 0.5034 0.5008
k 0.4749 0.4765 0.4704 0.4731 0.4814 0.4799 0.4805 0.4824 0.4807 0.4814
l 0.5133 0.5109 0.5108 0.5261 0.5146 0.5105 0.5016 0.5029 0.5083 0.5131
m 0.5181 0.5182 0.5249 0.5245 0.5135 0.5167 0.5212 0.5157 0.5144 0.5248
n 0.5117 0.5120 0.5112 0.5213 0.5227 0.5142 0.5207 0.5345 0.5211 0.5127
o 0.5217 0.5205 0.5195 0.5122 0.5143 0.5218 0.5203 0.5187 0.5207 0.5198
p 0.5276 0.5232 0.5284 0.5216 0.5108 0.5167 0.5254 0.5329 0.5206 0.5212
q 0.5048 0.5048 0.5056 0.5049 0.5085 0.5048 0.5072 0.5077 0.5058 0.5054
r 0.5398 0.5391 0.5810 0.5459 0.5415 0.5383 0.5351 0.5406 0.5427 0.5432

mean 0.5111 0.5109 0.5145 0.5147 0.5123 0.5122 0.5136 0.5131 0.5132 0.5127
rand 0.5103 0.5048 0.4983 0.5080 0.5065 0.5071 0.5100 0.5082 0.5042 0.5095

distribution gC1
, C gC2

, C gC3
, C gC1

,Π gC2
,Π gC3

,Π gGH1
, CgGH2

, CgGH3
, CgGH1

, Π

a 0.5213 0.5201 0.5290 0.5250 0.5274 0.5271 0.5274 0.5173 0.5052 0.5256
b 0.4958 0.4984 0.5031 0.5077 0.4907 0.5057 0.4945 0.5068 0.5033 0.5026
c 0.5242 0.5195 0.5251 0.5288 0.5269 0.5249 0.5192 0.5008 0.5079 0.5285
d 0.5109 0.5097 0.5223 0.5151 0.5109 0.5155 0.5113 0.5587 0.5506 0.5139
e 0.5220 0.5205 0.5021 0.5139 0.5211 0.4982 0.5162 0.5245 0.5022 0.4980
f 0.4744 0.4746 0.4783 0.4799 0.4751 0.4822 0.4843 0.5117 0.5102 0.4772
g 0.5304 0.5295 0.5251 0.5323 0.5348 0.5310 0.5380 0.4904 0.5028 0.5364
h 0.5121 0.5116 0.5074 0.5062 0.5081 0.5092 0.5108 0.5222 0.5167 0.5069
i 0.5166 0.5201 0.5288 0.5209 0.5244 0.5253 0.5297 0.4990 0.5078 0.5201
j 0.5007 0.5004 0.5065 0.5015 0.5018 0.5028 0.5054 0.5167 0.5124 0.5020
k 0.4813 0.4725 0.4842 0.4828 0.4813 0.4822 0.4829 0.5034 0.5130 0.4791
l 0.5188 0.5236 0.5103 0.5149 0.5135 0.5150 0.5181 0.5162 0.5052 0.5131
m 0.5209 0.5107 0.5185 0.5204 0.5179 0.5167 0.5218 0.5226 0.5368 0.5190
n 0.5187 0.5138 0.5249 0.5298 0.5213 0.5190 0.5117 0.5153 0.5228 0.5126
o 0.5199 0.5129 0.5266 0.5183 0.5220 0.5209 0.5167 0.5160 0.5157 0.5207
p 0.5303 0.5119 0.5280 0.5240 0.5264 0.5261 0.5264 0.5303 0.5437 0.5246
q 0.5079 0.5047 0.5056 0.5052 0.5070 0.5035 0.5072 0.5131 0.5091 0.5045
r 0.5349 0.5343 0.5435 0.5380 0.5378 0.5442 0.5361 0.5463 0.5209 0.5401

mean 0.5134 0.5105 0.5150 0.5147 0.5138 0.5139 0.5143 0.5173 0.5159 0.5125
rand 0.5190 0.5137 0.5176 0.5185 0.5168 0.5180 0.5152 0.5091 0.5026 0.5040

distributiongGH2
, ΠgGH3

, ΠgGB1
, C gGB2

, C gGB3
, CgGB1

, ΠgGB2
,ΠgGB3

, Π gJ, C gJ,Π

a 0.5142 0.5125 0.5301 0.5291 0.5328 0.5356 0.5343 0.5317 0.5247 0.5230
b 0.5099 0.4990 0.5023 0.4966 0.4911 0.5077 0.5060 0.4983 0.5058 0.5088
c 0.5220 0.5079 0.5182 0.5214 0.5291 0.5245 0.5185 0.5281 0.5302 0.5311
d 0.5038 0.5115 0.5186 0.5096 0.5053 0.5072 0.5205 0.5128 0.5085 0.5094
e 0.4989 0.5099 0.5081 0.5515 0.5374 0.5092 0.5453 0.5428 0.5028 0.5109
f 0.4865 0.5132 0.4799 0.4752 0.4745 0.4774 0.4831 0.4759 0.4763 0.4850
g 0.5314 0.4853 0.5300 0.5384 0.5396 0.5307 0.5397 0.5403 0.5370 0.5334
h 0.5107 0.5106 0.5034 0.5059 0.5087 0.5082 0.5092 0.5065 0.5041 0.5043
i 0.5236 0.4992 0.5232 0.5233 0.5435 0.5235 0.5186 0.5471 0.5235 0.5272
j 0.5032 0.5212 0.5020 0.5018 0.5030 0.5031 0.5059 0.5063 0.5009 0.5061
k 0.4846 0.5048 0.4729 0.4804 0.4833 0.4822 0.4803 0.4800 0.4815 0.4792
l 0.5092 0.5020 0.5157 0.5093 0.5164 0.5136 0.5159 0.5133 0.5135 0.5111
m 0.5165 0.5288 0.5167 0.5195 0.5156 0.5182 0.5200 0.5171 0.5164 0.5283
n 0.5146 0.5162 0.5227 0.5280 0.5371 0.5208 0.5169 0.5172 0.5170 0.5209
o 0.5690 0.5180 0.5159 0.5160 0.5222 0.5215 0.5205 0.5211 0.5173 0.5222
p 0.5331 0.5201 0.5291 0.5281 0.5318 0.5346 0.5333 0.5307 0.5237 0.5220
q 0.5070 0.4952 0.5035 0.5058 0.5076 0.5056 0.5070 0.5058 0.5051 0.5038
r 0.5537 0.5365 0.5383 0.5400 0.5429 0.5440 0.5401 0.5351 0.5368 0.5343

mean 0.5162 0.5107 0.5128 0.5156 0.5179 0.5149 0.5175 0.5172 0.5125 0.5145
rand 0.5134 0.5149 0.5167 0.5188 0.5138 0.5189 0.5145 0.5174 0.5175 0.5176
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Table 3. Averages of Amari errors for d = 2, n = 1000, and n = 1500

samples in each class of distributions. The best (smallest) entry of our

functions in each row is boldfaced.

n=1000
class FastICAInfomax JADE RADICAL HICA RLICA g1, C g2, C g3,Π g4, Π

symmetric 0.5175 0.5176 0.5137 0.5142 0.5195 0.5136 0.5092 0.5148 0.5117 0.5125
nonsymmetric 0.5222 0.5193 0.5214 0.5221 0.5193 0.5191 0.5172 0.5169 0.5193 0.5192

kurtoses+ 0.5211 0.5207 0.5142 0.5193 0.5168 0.5167 0.5131 0.5165 0.5109 0.5159
kurtoses- 0.5187 0.5173 0.5176 0.5165 0.5204 0.5154 0.5119 0.5153 0.5161 0.5148
unimodal 0.5190 0.5182 0.5137 0.5173 0.5154 0.5130 0.5076 0.5100 0.5118 0.5128

multimodal 0.5274 0.5247 0.5297 0.5252 0.5240 0.5236 0.5234 0.5246 0.5249 0.5240
transitional 0.5118 0.5120 0.5085 0.5092 0.5211 0.5123 0.5086 0.5157 0.5090 0.5100

class gC1
, C gC2

, C gC3
, C gC1

,Π gC2
,Π gC3

,Π gGH1
, CgGH2

, CgGH3
, CgGH1

, Π

symmetric 0.5142 0.5164 0.5146 0.5150 0.5138 0.5101 0.5134 0.5136 0.5124 0.5126
nonsymmetric 0.5185 0.5184 0.5221 0.5208 0.5199 0.5182 0.5208 0.5217 0.5240 0.5194

kurtoses+ 0.5199 0.5197 0.5200 0.5178 0.5187 0.5148 0.5194 0.5115 0.5166 0.5146
Kurtoses- 0.5143 0.5162 0.5165 0.5171 0.5152 0.5126 0.5151 0.5187 0.5170 0.5155
unimodal 0.5139 0.5126 0.5157 0.5153 0.5144 0.5129 0.5125 0.5131 0.5147 0.5126

multimodal 0.5203 0.5263 0.5253 0.5251 0.5233 0.5207 0.5259 0.5240 0.5242 0.5248
transitional 0.5145 0.5155 0.5126 0.5127 0.5119 0.5063 0.5128 0.5152 0.5130 0.5101

class gGH2
, ΠgGH3

, ΠgGB1
, C gGB2

, C gGB3
, CgGB1

,ΠgGB2
,ΠgGB3

, Π gJ, C gJ,Π

symmetric 0.5113 0.5100 0.5144 0.5156 0.5134 0.5144 0.5125 0.5148 0.5154 0.5128
nonsymmetric 0.5196 0.5183 0.5194 0.5239 0.5238 0.5193 0.5226 0.5248 0.5181 0.5196

kurtoses+ 0.5139 0.5120 0.5178 0.5254 0.5208 0.5171 0.5203 0.5237 0.5169 0.5178
Kurtoses- 0.5147 0.5137 0.5158 0.5163 0.5162 0.5160 0.5149 0.5168 0.5162 0.5145
unimodal 0.5124 0.5099 0.5130 0.5177 0.5151 0.5143 0.5158 0.5162 0.5151 0.5130

multimodal 0.5236 0.5213 0.5215 0.5254 0.5271 0.5256 0.5241 0.5259 0.5219 0.5228
transitional 0.5087 0.5104 0.5166 0.5142 0.5115 0.5102 0.5097 0.5154 0.5131 0.5120

n=1500
class FastICAInfomax JADE RADICAL HICA RLICA g1, C g2, C g3,Π g4, Π

symmetric 0.5127 0.5130 0.5145 0.5150 0.5138 0.5140 0.5155 0.5143 0.5158 0.5153
nonsymmetric 0.5085 0.5075 0.5144 0.5143 0.5100 0.5095 0.5106 0.5112 0.5093 0.5085

kurtoses+ 0.4993 0.4994 0.5007 0.5059 0.5056 0.5043 0.5077 0.5027 0.5075 0.5036
Kurtoses- 0.5156 0.5153 0.5198 0.5181 0.5149 0.5153 0.5159 0.5170 0.5154 0.5162
unimodal 0.5162 0.5161 0.5217 0.5203 0.5182 0.5168 0.5172 0.5162 0.5184 0.5168

multimodal 0.5110 0.5099 0.5133 0.5162 0.5084 0.5118 0.5146 0.5120 0.5113 0.5143
transitional 0.5030 0.5035 0.5042 0.5043 0.5069 0.5054 0.5070 0.5090 0.5069 0.5044

class gC1
, C gC2

, C gC3
, C gC1

,Π gC2
,Π gC3

,Π gGH1
, CgGH2

, CgGH3
, CgGH1

, Π

symmetric 0.5132 0.5110 0.5172 0.5168 0.5145 0.5161 0.5150 0.5146 0.5163 0.5149
nonsymmetric 0.5137 0.5097 0.5115 0.5115 0.5127 0.5103 0.5132 0.5215 0.5152 0.5088

kurtoses+ 0.5049 0.5047 0.5070 0.5083 0.5050 0.5057 0.5067 0.5238 0.5143 0.5035
Kurtoses- 0.5167 0.5127 0.5180 0.5172 0.5172 0.5170 0.5172 0.5148 0.5165 0.5160
unimodal 0.5175 0.5175 0.5207 0.5192 0.5185 0.5190 0.5188 0.5231 0.5139 0.5168

multimodal 0.5113 0.5054 0.5113 0.5116 0.5112 0.5118 0.5152 0.5143 0.5212 0.5118
transitional 0.5088 0.5044 0.5094 0.5106 0.5089 0.5078 0.5064 0.5110 0.5139 0.5063

class gGH2
, ΠgGH3

, ΠgGB1
, C gGB2

, C gGB3
, CgGB1

,ΠgGB2
,ΠgGB3

, Π gJ, C gJ,Π

symmetric 0.5184 0.5093 0.5146 0.5148 0.5181 0.5159 0.5170 0.5178 0.5146 0.5176
nonsymmetric 0.5128 0.5128 0.5099 0.5167 0.5175 0.5132 0.5183 0.5163 0.5092 0.5096

kurtoses+ 0.5027 0.5092 0.5078 0.5124 0.5082 0.5074 0.5178 0.5123 0.5036 0.5074
Kurtoses- 0.5214 0.5112 0.5147 0.5168 0.5216 0.5177 0.5174 0.5191 0.5159 0.5172
unimodal 0.5228 0.5111 0.5190 0.5219 0.5240 0.5203 0.5252 0.5253 0.5166 0.5184

multimodal 0.5141 0.5137 0.5115 0.5126 0.5129 0.5128 0.5164 0.5141 0.5109 0.5150
transitional 0.5078 0.5069 0.5041 0.5083 0.5132 0.5083 0.5064 0.5075 0.5076 0.5079

mixing matrix coefficients obtained by GDDCICAg,C and GDDCICAg,Π can
be used as an input variable.

Let X be a time series matrix and Ŝ and Â be estimates of the source signal
matrix and the mixing coefficients matrix obtained by an ICA algorithm on
X, respectively. Thus, time series matrix X can be predicted by ŜÂ; i.e.,
X ≈ ŜÂ, which it means that matrix X is approximately equal to ŜÂ. We
know that the columns of Ŝ including the independent time series and their
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Figure 1. Density plots of 18 different distribution of sources: (a)

Student with 3 degrees of freedom; (b) double exponential; (c) uniform;

(d) Student with 5 degrees of freedom; (e) exponential; (f) mixture of

two double exponentials; (g)-(h)-(i) symmetric mixtures of two Gaus-

sians: multimodal, transitional and unimodal; (j)-(k)-(l) nonsymmetric

mixtures of two Gaussians, multimodal, transitional and unimodal; (m)-

(n)-(o) symmetric mixtures of four Gaussians: multimodal, transitional

and unimodal; (p)-(q)-(r) nonsymmetric mixtures of four Gaussians: mul-

timodal, transitional and unimodal.



542 F. Asadi, H. Torabi, H. Nadeb

dependencies are converted to the weight matrix Â. On the other hand, i-th
column of X is constructed as a multiplication of matrix Ŝ and the i-th column
of Â. Thus, the same columns in Â construct the same trends in the original
time series. Therefore, detecting the similar columns of Â, imply to detect the
similar columns of X. Hence, for clustering the time series matrix X, we can
apply a clustering algorithm on Â.

Based on Guo et al. [11], Zanghaei et al. [37] and Rahmanishamsi et al. [27],
instead of applying clustering algorithms on data, it is better that a suitable
transformation being used before clustering process to strengthen clustering
results. In this article, the ICA algorithm was first implemented on the data
and then clustering was done.

So, application of the suggested algorithm as a pre-processing in the time
series clustering can induce its application. The Partitioning Around Medoids
(PAM) algorithm was introduced by Rdusseeun and Kaufman [28] can be used
as a complementary algorithm. Regard to this, the PAM clustering algorithm
can employing to unmixing matrix extracted from resulted mixing matrix es-
timation using all algorithms GDDCICAg,C and GDDCICAg,Π to determine
the suitable number of clusters and to select the best clustering in terms of the
Silhouette criterion (Rousseeuw [30]) using NbClust R package.

Here, we consider a dataset including international tourism receipts (% of
total exports) from 2000 to 2020 for 19 various countries. The dataset was se-
lected from the organization of the World Bank (https://data.worldbank.org)
and including the countries Argentina, Australia, Brazil, Bulgaria, Croatia,
Cyprus, France, Germany, Greece, Hungary, Japan, Malaysia, Mexico, Nor-
way, Poland, Portugal, Switzerland, Thailand, and the United States.

The goal of this analysis is clustering of these countries based on their time
series over the past 21 years. In this purpose, we use the standardised data.
After applying the GDDCICAg,C , GDDCICAg,Π and some existing ICA algo-
rithms on the data, we clustered the countries. To evaluate the accuracy of
clustering, we used the common criterion, the average Silhouette score. The
higher value of the average Silhouette score implies the batter clustering. The
results are reported in Table 4. In this table, it is observed that the algorithm
GDDCICAg2,C exhibiting the highest average Silhouette score among all of
algorithms, and thus it is selected as the best-performing result.

Therefore, since the GDDCICAg2,C algorithm implied the highest Silhouette
in clustering, the result of its clustering is presented in Table 5.

We also directly applied the PAM algorithm on the standardized data ma-
trix. In this case, the PAM algorithm suggest 5 clusters. The result of this
clustering is presented in Table 6.

Time series plots in 7 clusters obtained by GDDCICAg2,C and then using
the PAM, are drawn in Figure 2 and their plots in 5 clusters obtained by the
direct using of the PAM, are drawn in Figure 3 . Comparing the trends plotted
in all clusters in the both clusters, it is concluded that the pre-processing
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Table 4. Number of clusters and declare the best cluster-
ing method based on the Silhouette criterion for international
tourism receipts time series.

Method
Suggested Average

Method
Suggested Average

number of Silhoutte number of Silhoutte
clusters Score clusters Score

FastICA 5 0.029 GDDCICAgC3
,Π 4 0.030

Infomax 3 0.037 GDDCICAgGH1
,C 3 0.036

JADE 5 0.035 GDDCICAgGH2
,C 8 0.039

RADICAL 6 0.024 GDDCICAgGH3
,C 5 0.033

HICA 3 0.021 GDDCICAgJ,Π
5 0.038

RLICA 4 0.022 GDDCICAgGH1
,Π 6 0.031

GDDCICAg1,C 4 0.032 GDDCICAgGH2
,Π 4 0.029

GDDCICAg2,C 7 0.041 GDDCICAgGH3
,Π 4 0.036

GDDCICAg3,Π 8 0.039 GDDCICAgGB1
,C 5 0.029

GDDCICAg4,Π 10 0.038 GDDCICAgGB2
,C 6 0.039

GDDCICAgC1
,C 7 0.025 GDDCICAgGB3

,C 7 0.038

GDDCICAgC2
,C 6 0.028 GDDCICAgGB1

,Π 8 0.037

GDDCICAgC3
,C 8 0.035 GDDCICAgGB2

,Π 9 0.033

GDDCICAgC1
,Π 6 0.033 GDDCICAgGB3

,Π 5 0.040

GDDCICAgC2
,Π 4 0.030 GDDCICAgJ,C

4 0.037

Table 5. Clustering of standardized international tourism re-
ceipts time series using the PAM algorithm after using the
GDDCICAg2,C algorithm.

Cluster members
Cluster 1 Argentina, Australia, Brazil, United States
Cluster 2 Bulgaria, Malaysia, Thailand
Cluster 3 Croatia, Cyprus, Germany, Hungary, Norway
Cluster 4 France, Mexico
Cluster 5 Japan, Greece
Cluster 6 Portugal, Poland
Cluster 7 Switzerland

technique by the proposed algorithm for clustering countries works very well,
since it provided more homogeneity in the clusters. It is induced from extracted
similar trends in standardized international tourism receipts in countries in the
same identical clusters.

9. Conclusion

Keziou et al. [15] introduced blind source separation for independent com-
ponent estimation, proposing a criterion based on mutual information derived
from copulas. Building upon this work, our paper extends their concept by
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Table 6. Clustering of standardized international tourism re-
ceipts time series by using the PAM algorithm on the data
matrix directly.

Cluster members
Cluster 1 Argentina, France, Hungary, Malaysia, United States
Cluster 2 Australia, Bulgaria, Portugal, Thailand
Cluster 3 Brazil, Germany, Japan, Mexico, Norway, Poland, Switzerlandy
Cluster 4 Cyprus, Greece
Cluster 5 Croatia

proposing a criterion based on a general class of density-based dependence cri-
teria. Additionally, we present a copula-based version denoted as GDDCg,C∗ .
Our results demonstrate that criteria from this class remain invariant under
monotone transformations of random variables, and they vanish when the ran-
dom variables are independent. Furthermore, we introduce two estimators, de-

noted as estimator ĜDDCg,C and estimator ĜDDCg,Π, for the criterion based
on copulas. Subsequently, new algorithms, denoted as algorithm GDDCICAg,C

and algorithm GDDCICAg,Π, for ICAs are developed based on these estima-
tors.

The performance of the suggested algorithms is evaluated and compared to
existing algorithms through Monte Carlo simulation studies, where the inde-
pendent components follow the 18 different distributions provided by Bach and
Jordan [4]. Our results indicate that in most cases, the proposed algorithms
demonstrate good performance in estimating the unmixing matrix, outperform-
ing traditional ICA algorithms across various classes of distributions in terms
of the average of the Amari errors.

To demonstrate the practical application of the suggested algorithms, we
employ a batch of time series data comprising international tourism receipts
(% of total exports) from 2000 to 2020 for 19 different countries, using R soft-
ware for analysis. The algorithms are applied to these samples, along with
the PAM algorithm, to cluster countries based on their international tourism
receipts time series data samples. The algorithm GDDCICAg2,C is employed
as a pre-processing step, followed by principal component analysis. The re-
sulting coefficients of the mixing matrix are then used as inputs to the PAM

clustering algorithm. Our findings from this hybrid approach illustrate that
the pre-processing technique by the proposed algorithm can effectively facili-
tate suitable clustering of different data following diverse distributions.
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Figure 2. Trend plots of standardized international tourism
receipts time series in 7 clusters obtained by GDDCICAg2,C

and then using the PAM.
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Figure 3. Trend plots of standardized international tourism
receipts time series in 5 clusters obtained by the direct using
of the PAM on the data matrix.
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