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Abstract. In this paper, we study modules and filters on semihoops.
Firstly, we introduce the definition of modules on semihoops and give

some examples to illustrate it. Also, we get some significant results
related to modules on semihoops. If the semihoop G can generate an

Abelian group, then G is a module of any subalgebra S of the semihoop

G. Then, we use modules and filters to investigate the relationship be-
tween modules and semihoops regarding quotient algebras. Secondly, by

introducing the definitions of prime submodules and torsion free modules

on semihoops, we explore the relationship among prime modules, filters,
and torsion free modules. Moreover, we discuss the relationship between

the images and inverse images under the homomorphism of semihoops and

modules, respectively. Finally, we define multiplication modules and co-
multiplication modules on semihoops. We study the relationship among

multiplication modules and submodules on semihoops and provide the

condition for comultiplication modules to satisfy the descending chain
condition.

Keywords: semihoop, filter, module, (prime) submodule, torsion free mod-
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1. Introduction

Non-classical logic has emerged as a valuable tool for computers to han-
dle uncertain and fuzzy information. Logical algebras, such as BL-algebras,
MV -algebras, Hoops, semihoops, and Residuated lattices etc, among others,
have been introduced as the semantic systems of non-classical logic systems.
Therefore, exploring algebras that display residuated law property is of con-
siderable significance. Semihoops represent the most fundamental residuated
structure, encompassing all logical algebras that satisfy the residuated law. In
1960, Bosbach [9, 10] first introduced the concept of semihoops. Semihoops
are a generalization of hoop algebras, from a logical perspective, the semi-
hoops algebra represents the algebraic semantics of a reasoning system that
can be algebraized and is considered as a subreduction of basic logic. From
an algebraic viewpoint, semihoops are essentially commutative integral semi-
groups of a natural order. In recent years, numerous scholars have conducted
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indepth studies on aspects such as semihoops, filters, states etc, obtaining sig-
nificant conclusions. In 2015, Borzooei [5] introduced the concepts of local and
perfect semihoops and proved some related results, and discovered a relation
between local and perfect semihoops. In 2017, Aguzzoli [2] investigated the re-
lationships between prelinear semihoops, Boolean algebras, and strong perfect
MTL-algebras. In the same year, Aaly [16] investigated topological structures
on a semihoop and under certain conditions showed that there exists a topol-
ogy such that it can generate a topological semihoop. In 2018, Fu [13] studied
the properties of internal mappings on semihoops and defined them as states.
In the same year, Niu and Xin [18] examined the concept of tense operators
on bounded semihoops and investigated related properties concerning tense fil-
ters. Xin [22] introduced the notions of derivations and differential filters on
semihoops and investigated some related properties. In 2020, Niu et al. [19]
studied different types of ideals on bounded semihoops and explored their re-
lationships. In 2024, Xin [21] presented the concepts of L-fuzzy ideals, L-fuzzy
prime ideals, and L-fuzzy maximal ideals on bounded semihoops and discussed
some properties. In the same year, Wang [20] discussed the related properties
of some particular derivations in semihoops and gave some characterizations of
them. Consequently, semihoops have become a focal point in the study of logic
algebras in the past decade.

Every module is an action of a ring on a certain group. This is a motivation
for studying the action of semihoops on groups, that is modules of semihoops.
Because the modules of semihoops have the partial order relation and Galois
connection, this is a good perspective for studying the substructures of semi-
hoops by using the module structure, and we can also explore the substructures
of modules through the research of semihoops. Many scholars have a profound
interest in modular structures in algebraic structures and have achieved nu-
merous interesting results. In 1994, Aslam etal [1] introduced the concept of
BCK-module as a function of BCK-algebra on commutative groups. In 2003,
Nola [11] introduced the concept of MV -module as a function of PMV -algebra
on MV-algebra. In 2011, Bakhshi [3] introduced the concepts of fuzzy BCK-
submodule and fuzzy multiplication BCK-module, and used the concept of
fuzzy residual quotient BCK-submodule to study their properties and pro-
vided some features. In 2014, Borzooei [6] defined the concept of extending the
BCK-module, which is an extension of the BCK-module, and demonstrated
some related results. In the same year, Motahari [17] studied some results
of prime BCK-submodules under BCK-epimorphism. In 2015, Kashif [15]
introduced the concept of BCK-topological modules in a natural way and es-
tablished that each decreasing sequence of submodules on a bounded commu-
tative BCK-algebra is indeed a BCK-topological module. In the same year,
Borzooei [7] defined the concept of freely extending BCK-modules and free ob-
jects within the scope of extended BCK-modules, and proved the relationship
between free modules and production modules. In 2024, Sabetkish [8] studied
some important results on modules such as submodules and quotient structures,
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and investigated the relationships between ring modules and other modules on
logical algebraic structures such as BCK-modules and MV -modules. In the
same year, Borzooei [14] introduced the definitions of modules and prime sub-
modules on L-algebras, exploring the relationship between prime ideals and
module and prime submodule in L-representation. Since semihoops represent
the most fundamental residuated structure, we hope to extend some of the
results in this paper to other algebras, such as BL-algebras, MV -algebras,
Hoops, and Residuated lattices etc.

The main purpose of this paper is to study modules and filters on semihoops.
Firstly, we introduce the concept of modules on semihoops and give some ex-
amples to illustrate it. Moreover, we find that if the semihoop G can generate
an Abelian group, then G is a module of any subalgebra S of the semihoop G.
Afterwards, we use modules and filters to investigate the relationship between
modules and semihoops regarding quotient algebras. Secondly, by introducing
the definitions of prime submodules and torsion free modules on semihoops, we
explore the relationship among prime modules, filters, and torsion free mod-
ules. We can conclude that let G be a module of the linear bounded semihoop
S and H be a filter of the module G. If H is a prime submodule of G if and only
if C = (H : G) ∪ {1} is a filter of S and G

H is a torsion free module of S
C . Ad-

ditionally, we discuss the relationship between the images and inverse images
under the homomorphism of semihoops and modules, respectively. Finally, we
define multiplication modules and comultiplication modules on semihoops. We
study the relationship among multiplication modules and submodules on semi-
hoops and provide the condition for comultiplication modules to satisfy the
descending chain condition.

2. Preliminaries

Definition 2.1. [12] An algebra (S,�,→,∧, 1) of type (2, 2, 2, 0) is called a
semihoop if it satisfies:
(S1) (S,∧, 1) is a ∧-semilattice and it has an upper bound 1;
(S2) (S,�, 1) is a commutative monoid;
(S3) (x� y)→ z = x→ (y → z), for any x, y, z ∈ S.

In a semihoop (S,�,→,∧, 1), we define x ≤ y if and only if x → y = 1, for
any x, y ∈ S. It is easy to check that ≤ is a partial order relation on S and we
get x ≤ 1, for any x ∈ S.

Proposition 2.2. [12] Let S be a semihoop. Then the following properties
hold:
(1) x� y ≤ z if and only if x ≤ y → z, for every x, y, z ∈ S;
(2) x� y ≤ x, y, for any x, y ∈ S;
(3) 1→ x = x, x→ 1 = 1, for all x ∈ S;
(4) x� (x→ y) ≤ y, for any x, y ∈ S;
(5) x→ (y → z) = y → (x→ z), for any x, y, z ∈ S.



42 H. Chen, X. L. Xin

A semihoop (S,�,→,∧, 1) is called a bounded semihoop if there exists an
element 0 ∈ S such that 0 ≤ x, for all x ∈ S. We denote a bounded semihoop
(S,�,→,∧, 0, 1) by S. In a bounded semihoop S, we define the negation ′ :
x′ = x→ 0, for any x ∈ S.

Definition 2.3. [5] Let S be a semihoop. A nonempty subset F of S is called
a filter of S, if it satisfies:

(F1) x, y ∈ F implies x� y ∈ F ;
(F2) x ≤ y and x ∈ F imply y ∈ F , for any x, y ∈ S.

Definition 2.4. [21] Let S1, S2 be bounded semihoops. A mapping f : S1 →
S2 is called a homomorphism if for any x, y ∈ S1, we have

(1) f(x�S1
y) = f(x)�S2

f(y);
(2) f(x→S1

y) = f(x)→S2
f(y);

(3) f(x ∧S1
y) = f(x) ∧S2

f(y);
(4) f(0) = 0S2 .

It is clear that f(1) = 1S2
, since f(1→S1

1) = f(1)→S2
f(1) = 1S2

.

Definition 2.5. [4] A group G is an algebra (G, ∗, 1) with a binary, a unary,
in which the following identities are true:

(G1) x ∗ (y · z) = (x ∗ y) · z;
(G2) x ∗ 1 = 1 ∗ x = x;
(G3) x ∗ x−1 = x−1 ∗ x = 1.

We call 1 is an identity element and x−1 is an inverse element of x for any
x ∈ G. The identity element 1 and inverse element of each element in the group
G are unique.

Definition 2.6. [4] A group G is Abelian (or commutative ) if the following
identity is true: x ∗ y = y ∗ x.

3. Modules on the semihoops

In this section, we define the modules on semihoops and obtain some im-
portant results. Subsequently, we introduce the concepts of prime submodules,
torsion free modules, multiplication modules, and comultiplication modules
and explore the relationships among them through employing the concepts of
homomorphism, filter, quotient structure.

Definition 3.1. Let (S,�,→,∧, 1) and (G,�G,→G,∧G, 1) be semihoops. Then
G is called a module of the semihoop S, if (G, ∗, 1) is an Abelian group and
there is an operation · : S ×G→ G defined by (x, g) 7→ x · g such that for any
x, y ∈ S and f, g ∈ G, we have:

(SH1) 1 · g = g;
(SH2) x · (f ∗ g) ≤ x · f ∗ x · g;
(SH3) (x� y) · g = x · (y · g);
(SH4) (x ∧ y) · g = (x · g) ∧G (y · g);
(SH5) (x→ y) · g = g ∗ (x · g →G y · g).
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When g = 1, we can get that (x→ y) ·1 = 1∗ (x ·1→G y ·1) = x ·1→G y ·1.
Therefore, it can be found that when g = 1, the operation · is distributive with
respect to the operation → of the semihoop. However, generally speaking, we
can’t prove that the operation · is distributive with respect to the operation→
of the semihoop. The following example can illustrate that condition (SH5) is
appropriate.

Example 3.2. Let S = ({0, a, b, 1},�,→,∧, 0, 1) be a bounded semihoop. We
define two operations on S as shown in Table 1 and Table 2.

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

Table 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Table 2

Let G = (G = {0, α, β, 1},�,→,∧, 0, 1) be a bounded semihoop. We define
two operations on G as shown in Table 3 and Table 4.

� 0 α β 1
0 0 0 0 0
α 0 α 0 α
β 0 0 β β
1 0 α β 1

Table 3

→ 0 α β 1
0 1 1 1 1
α β 1 β 1
β α α 1 1
1 0 α β 1

Table 4

We define G = ({0, α, β, 1}, ∗, 1) as an Abelian group and the operation ∗ on
G as shown in Table 5:

∗ 0 α β 1
0 1 β α 0
α β 1 0 α
β α 0 1 β
1 0 α β 1

Table 5

Set · : S ×G→ G by x · g = g, for any x ∈ S and g ∈ G. We have:
(SH1): It is obvious that 1 · g = g, for any g ∈ G. Therefore, (SH1) holds.
(SH2): For any x ∈ S and f, g ∈ G, we have x · (f ∗ g) = f ∗ g = x · f ∗x · g.

Therefore, (SH2) holds.
(SH3): For any x, y ∈ S and g ∈ G, we have (x�y)·g = g = x·g = x·(y ·g).

Therefore, (SH3) holds.
(SH4): For any x, y ∈ S and g ∈ G, we have (x ∧ y) · g = g = g ∧G g =

(x · g) ∧G (y · g). Therefore, (SH4) holds.
(SH5): For any x, y ∈ S and g ∈ G, (x → y) · g = g = g ∗ 1 = g ∗ (g →G

g) = g ∗ (x · g →G y · g). Therefore, (SH5) holds.
Therefore, the group G = ({0, α, β, 1}, ∗, 1) is a module of S.
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Example 3.3. Let S = ({0, a, 1},�,→,∧, 0, 1) be a bounded semihoop. We
define two operations on S as shown in Table 6 and Table 7.

� 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

Table 6

→ 0 a 1
0 1 1 1
a 0 1 1
1 0 a 1

Table 7

Let G = (G = {0, α, 1},�,→,∧, 0, 1) be a bounded semihoop. We define two
operations on G as shown in Table 8 and Table 9.

� 0 α 1
0 0 0 0
α 0 0 α
1 0 α 1

Table 8

→ 0 α 1
0 1 1 1
α α 1 1
1 0 α 1

Table 9

We define G = ({0, α, 1}, ∗, 1) as an Abelian group and the operation ∗ on
G as shown in Table 10:

∗ 0 α 1
0 α 1 0
α 1 0 α
1 0 α 1

Table 10

Set · : S × G → G defined by (x, g) 7→ x · g, in which, 1 · g = g, a · g = g,
0 · 0 = 0, 0 · 1 = 1, and 0 · α = 0, for any x ∈ S and g ∈ G. We have:

(SH1): It is obvious that 1 · g = g, for any g ∈ G. Therefore, (SH1) holds.
(SH2): For any x ∈ S and f, g ∈ G, we have 0 · (0 ∗ 0) = 0 · α = 0 ≤ α =

0 ∗ 0 = 0 · 0 ∗ 0 · 0 and 0 · (α ∗ 1) = 0 · α = 0 ≤ 0 = 0 ∗ 1 = 0 · 0 ∗ 0 · 1. We can
use the same method to prove that x · (f ∗ g) ≤ x · f ∗ x · g. Therefore, (SH2)
holds.

(SH3): For any x, y ∈ S and g ∈ G, we have (x�0) ·α = 0 ·α = 0 = x ·0 =
x · (0 · α) and (a� a) · α = a · α = α = a · α = a · (a · α). We can use the same
method to prove that (x� y) · g = x · (y · g). Therefore, (SH3) holds.

(SH4): For any x, y ∈ S and g ∈ G, we can easily prove that (x ∧ y) · g =
g = g ∧G g = (x · g) ∧G (y · g). Therefore, (SH4) holds.

(SH5): For any x, y ∈ S and g ∈ G, we have (1 → 0) · α = 0 · α = 0 =
α ∗ α = α ∗ (α →G 0) = α ∗ (1 · α →G 0 · α) and (a → 0) · α = 0 · α =
0 = α ∗ α = α ∗ (α →G 0) = α ∗ (a · α →G 0 · α). We can conclude that
(x→ y) · g = g ∗ (x · g →G y · g). Therefore, (SH5) holds.

Therefore, the group G = ({0, α, 1}, ∗, 1) is a module of S.
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Proposition 3.4. Let G = (G,�,→,∧, 1) be a semihoop and (S,�,→,∧, 1)
be a subalgebra of (G,�,→,∧, 1). If (G, ∗, 1) is an Abelian group, then (G, ∗, 1)
is a module of the semihoop S.

Proof. Let G = (G, ∗, 1) be an Abelian group. We define the operation · :
S × G → G by x · g = g, for every x ∈ S and g ∈ G. For any x, y ∈ S and
f, g ∈ G, we have:

(SH1): It is obvious that 1 · g = g for any g ∈ G. Therefore, (SH1) holds.
(SH2): For any x ∈ S and f, g ∈ G, we have x · (g ∗ f) = f ∗ g = x · g ∗ x · f .

Therefore, (SH2) holds.
(SH3): For any x, y ∈ S and g ∈ G, we have (x�y) ·g = g = y ·g = x ·(y ·g).

Therefore, (SH3) holds.
(SH4): For any x, y ∈ S and g ∈ G, we have (x ∧ y) · g = g = g ∧ g =

(x · g) ∧ (y · g). Therefore, (SH4) holds.
(SH5): For any x, y ∈ S and g ∈ G, (x→ y) · g = g = g ∗ 1 = g ∗ (g → g) =

g ∗ (x · g → y · g). Therefore, (SH5) holds.
Therefore, the group (G, ∗, 1) is a module of the semihoop S.

�

Example 3.5. Let G = (G = {0, a, 1},�,→,∧, 0, 1) be a bounded semihoop
and S = ({0, 1},�,→,∧, 0, 1) be a subalgebra of G. We define two operations
on G as shown in Table 11 and Table 12.

� 0 a 1
0 0 0 0
a 0 0 a
1 0 a 1

Table 11

→ 0 a 1
0 1 1 1
a a 1 1
1 0 a 1

Table 12

We define (G = {0, a, 1}, ∗, 1) as an Abelian group and the operation ∗ on
G as shown in Table 13.

∗ 0 a 1
0 a 1 0
a 1 0 a
1 0 a 1

Table 13

Set · : S × G → G by x · g = g, for any x ∈ S and g ∈ G. We can use
the same method as Proposition 3.4 to prove the group G = ({0, a, 1}, ∗, 1) is a
module of S.

Corollary 3.6. Let S = (S,�,→,∧, 1)) be a semihoop. If (S, ∗, 1) is an
Abelian group, then G = (S, ∗, 1) is a module of the semihoop S.
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Proof. Let S = (S,�,→,∧, 1) be a semihoop and G = (S, ∗, 1) is an Abelian
group. We use the same method as Proposition 3.4 can prove that the group
G = (S, ∗, 1) is a module of S. �

Example 3.7. Let S = (S = {0, a, 1},�,→,∧, 0, 1) be a bounded semihoop,
where 0 < a < 1. We define two operations on G as shown in Table 14 and
Table 15.

� 0 a 1
0 0 0 0
a 0 0 a
1 0 a 1

Table 14

→ 0 a 1
0 1 1 1
a a 1 1
1 0 a 1

Table 15

We define G = (S, ∗, 1) is an Abelian group and the operation ∗ on G as
shown in Table 16.

∗ 0 a 1
0 a 1 0
a 1 0 a
1 0 a 1

Table 16

Set · : S ×G→ G by x · g = g, for any x ∈ S and g ∈ G. We use the same
method as Proposition 3.4 can prove that the group G = (S, ∗, 1) is a module of
S.

Proposition 3.8. Let G be a module of the semihoop S. Then for any x, y ∈ S
and g, g1 ∈ G, the following statements hold:

(i) If x · 1 = 1 and g ∗ g1 = 1, then x · g ∗ x · g1 = 1;
(ii) If x ≤S y, then x · g ≤G y · g.
(iii) If G can generate a bounded semihoop, then x · 0 = 0, where 0 is the

smallest element of the bounded semihoop G.

Proof. (i) If x · 1 = 1 and g ∗ g1 = 1, then 1 = x · 1 = x · (g ∗ g1) ≤ x · g ∗ x · g1.
Therefore, x · g ∗ x · g1 = 1.

(ii) If x ≤S y, then g = 1 · g = (x→S y) · g = g ∗ (x · g →G y · g). Therefore,
x · g →G y · g = 1. This implies that x · g ≤G y · g.

(iii) If G can generate a bounded semihoop, then x ·0 ≤G 1 ·0 = 0 by x ≤S 1
and (ii). Therefore, x · 0 = 0. �

Let S be a bounded semihoop and F be a filter. We define a binary relation
∼F on S as follows: x ∼F y if and only if x→ y ∈ F and y → x ∈ F . In [5], it
was proved that ∼F is a congruence relation on S. Then ( S

F ,⊗, ,∧ S
F
, [0], [1])

is an bounded semihoop, where [x]  [y] = [x → y], [x] ∧ S
F

[y] = [x ∧ y], and

[x]⊗ [y] = [x� y], for any x, y ∈ S.
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Proposition 3.9. Let G be a module of the bounded semihoop S, where S is
a chain. If F is a filter of S, then G is a module of the bounded semihoop S

F .

Proof. Since G is a module of the bounded semihoop S, we can get that
(G,�G,→G,∧G, 1) is a semihoop, (G, ∗, 1) is an Abelian group, and there ex-
ists an operation · : S × G → G defined by (x, g) 7→ x · g, for any x ∈ S and
g ∈ G.

We define the operation • : S
F × G → G by [x] • g = x · g, for any [x] ∈ S

F
and g ∈ G. Let [x] = [y], for x, y ∈ F and g ∈ G. We can get that x ≤ y
or y ≤ x, since S is a chain. If x ≤ y, then x · g ≤G y · g for any g ∈ G, by
Proposition 3.8. Since [x] = [y], we have x → y = 1 ∈ F and y → x ∈ F .
Therefore, [1] = [y → x], and so (y → x) · g = (x → y) · g = 1 · g = g. Hence,
g ∗ (y · g →G x · g) = (y → x) · g = g, and so y · g →G x · g = 1. Therefore,
y · g ≤G x · g, and so x · g = y · g. If y ≤ x, we can use the same method to
prove that [x] = [y] implies x · g = y · g. Thus the operation · is well defined.

Subsequently, we will prove that the group G = (G, ∗, 1) is a module of S.
We have:

(SH1): It is obvious that [1]•g = 1 ·g = g, for any g ∈ G. Therefore, (SH1)
holds.

(SH2): For any [x] ∈ S
F and f, g ∈ G, we have [x] • (f ∗ g) = x · (f ∗ g) =

x · f ∗ x · g = [x] • f ∗ [x] • g. Therefore, (SH2) holds.
(SH3): For any [x], [y] ∈ S

F and g ∈ G, we have ([x]⊗ [y]) • g = [x� y] • g =
(x� y) · g = x · (y · g) = x · ([y] • g) = [x] • ([y] • g). Therefore, (SH3) holds.

(SH4): For any [x], [y] ∈ S
F and g ∈ G, we have ([x]∧ S

F
[y])•g = [x∧y]•g =

(x ∧ y) · g = x · g ∧G y · g = [x] • g ∧G [y] • g. Therefore, (SH4) holds.
(SH5): For any [x], [y] ∈ S

F and g ∈ G, we have ([x]  [y]) • g = [x →
y] • g = (x→ y) · g = g ∗ (x · g →G y · g) = g ∗ ([x] • g →G [y] • g). Therefore,
(SH5) holds.

Therefore, the group G = (G, ∗, 1) is a module of S
F , according to the defi-

nition of modules of semihoops.
�

Definition 3.10. Let G be a module of the semihoop S and H be a subalgebra
of G. If x · h ∈ H, for any x ∈ S and h ∈ H, then it is called a submodule of
G.

Note: If H is a submodule of G and H 6= G, then we call H is a proper
submodule of G.

Example 3.11. H = {α, 1} can generate a submodule of G in Example 3.2.
But H = {a, 1} can not generate a submodule of G in Example 3.5, since
a ∗ a = 0 /∈ H for a ∈ H.

Let G be a module of the bounded semihoop S and H be a submodule of G.
Since (G, ∗) is an Abelian group and H is a subgroup of G. We define a binary
relation ∼H on G as follows: x ∼H y if and only if x ∗ y−1 ∈ H. In [4], it was
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proved that ∼H is a congruence relation on G. So it is clear that ( G
H , ∗G

H
) is

an Abelian group, where (f ∗H) ∗G
H

(g ∗H) = (f ∗ g) ∗H, for every f, g ∈ G.

Definition 3.12. Let G be a module of the semihoop S. If H is a submodule
of G and is also a filter of (G,�,→,∧, 1), then H is called a filter of module G.

Example 3.13. H = {α, 1} can generate a filter of the module G in Example
3.2. But H = {a, 1} can not generate a filter of the module G in Example 3.5.

Theorem 3.14. Let G be a module of the bounded semihoop S. If H is a
submodule of module G, then G

H is a module of S.

Proof. Since G is a module of the bounded semihoop S, there exists an oper-
ation · : S × G → G by (x, g) 7→ x · g for any x ∈ S and g ∈ G. We define
the operation • : S × G

H →
G
H by x • (g ∗H) = x · g ∗H, for every x ∈ S and

g ∗H ∈ G
H . For any x ∈ S and g1, g2 ∈ G, Let x = y and g1 ∗H = g2 ∗H. Then

g1 ∗ g−12 ∈ H. Since H is a filter of module G and x · (g1 ∗ g−12 ) ≤ x · g1 ∗x · g−12 ,
we can get that x · g1 ∗ x · g−12 ∈ H and so x • g1 ∗H = x • g1 ∗H. It means
that • is well-defined.

For any f ∗H, g ∗H ∈ G
H and x, y ∈ S, we have:

(SH1): It is obvious that 1 • (g ∗H) = 1 · g ∗H = g ∗H. Therefore, (SH1)
holds.

(SH2): x • ((f ∗ H) ∗G
H

(g ∗ H)) = x • ((f ∗ g) ∗ H) = x · (f ∗ g) ∗ H =

(x · f ∗ x · g) ∗ H = (x · f ∗ H) ∗G
H

(x · g ∗ H) = x • (f ∗ H) ∗G
H
x • (g ∗ H).

Therefore, (SH2) holds.
(SH3): (x�S y)• (g ∗H) = (x�S y) · g ∗H = x · (y · g)∗H = x• (y · g ∗H) =

x • (y • (g ∗H)). Therefore, (SH3) holds.
(SH4): (x ∧S y) • (g ∗ H) = (x ∧S y) · g ∗ H = (x · g ∧G y · g) ∗ H =

((x · g ∗H)∧G
H

(y · g ∗H) = x • (g ∗H)∧G
H
y • (g ∗H). Therefore, (SH4) holds.

(SH5): (x→S y) • (g ∗H) = (x→S y) · g ∗H = (g ∗ (x · g →G y · g)) ∗H =
(g ∗H) ∗G

H
((x · g →G y · g) ∗H) = (g ∗H) ∗G

H
((x · g ∗H) →G

H
(y · g ∗H)) =

(g ∗H) ∗G
H

(x • (g ∗H)→G
H
y • (g ∗H)). Therefore, (SH5) holds.

Therefore, G
H is a module of the semihoop S. �

Definition 3.15. Let G be a module of the semihoop S and H be a proper
submodule of G. Then H is called a prime submodule of G, if x · g ∈ H, then
g ∈ H or x ∈ (H : G) = {x ∈ S|x ·G ⊆ H}, for x ∈ S and g ∈ G.

Example 3.16. H = {α, 1} can generate a submodule of G in Example 3.2.
It is clear that H = {α, 1} can generate a prime submodule of G.

Note: Let G be a module of the semihoop S, A ⊆ S, and B ⊆ G. We define
A ·B = {a · b|a ∈ A, b ∈ B}.

Proposition 3.17. Let G be a module of the semihoop S and H be a proper
submodule of G. If H is a prime submodule of G, then A · E ⊆ H implies
E ⊆ H or A ⊆ (H : G), for any filter A of S and submodule E of G.
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Proof. If H is a prime submodule of G and A · E ⊆ H for any submodule E
of G. We want to prove that E ⊆ H or A ⊆ (H : G). Now, we assume that
E * H and A * (H : G). Then there exist e ∈ E * H and x ∈ A * (H : G).
Since A · E ⊆ H, we have x · e ∈ H. Since H is a prime submodule of G and
e /∈ H, we can conclude that x ∈ (H : G), which is a contradiction. Therefore,
A ·E ⊆ H implies E ⊆ H or A ⊆ (H : G), for any filter A of S and submodule
E of G.

�

Lemma 3.18. Let G be a module of the bounded semihoop S and H be a proper
submodule of G. If H is a filter of G, then C = (H : G) ∪ {1} is a filter of S.

Proof. Let G be a module of the bounded semihoop S and H be a proper
submodule of G. We want to prove that C = (H : G)∪ {1} is a filter of S. For
any g ∈ G, we have:

(1) It is clear that the set (H : G) ∪ {1} is a nonempty subset of S.
(2) If x, y ∈ C = (H : G) ∪ {1}. We want to prove that x � y ∈ C = (H :

G) ∪ {1}. We will encounter the following four situations:
When x = 1 and y = 1, we have x� y = 1 ∈ C = (H : G) ∪ {1}.
When x = 1 and y 6= 1, we have y · g ∈ H for any g ∈ G. We can get that

(x� y) · g = (1� y) · g = y · g ∈ H. Therefore, x� y ∈ (H : G) and x� y ∈ C.
When x 6= 1 and y = 1, we can use the same method to prove x� y ∈ C.
When x 6= 1 and y 6= 1, We have x · g, y · g ∈ H for any g ∈ G. We can

conclude that (x� y) · g = x · (y · g) ∈ H. Since H is a proper submodule of G,
we have x · (y · g) ∈ H. Therefore, x� y ∈ C.

(3) If x ∈ C = (H : G) ∪ {1} and x ≤ y. We will encounter the following
two situations:

When x = 1, we have y = 1 ∈ C = (H : G) ∪ {1}, since x ≤ y.
When x 6= 1, we have x · g ∈ H for any g ∈ G. Since x ≤S y, we can get

that x · g ≤G y · g, according to Proposition 3.8. Since H is a filter of G, we
can conclude y · g ∈ H. Therefore, y ∈ C = (H : G) ∪ {1}.

Therefore, C = (H : G) ∪ {1} is a filter of S. �

Proposition 3.19. Let G be a module of the linear bounded semihoop S and
H be a proper submodule of G. If H is a filter of the module G and F is a
filter of S, then G

H is a module of S
F .

Proof. Since G is a module of the linear bounded semihoop S, there exists an
operation · : S ×G→ G by (x, g) 7→ x · g for any x ∈ S and g ∈ G. We define
an operation • : S

F ×
G
H →

G
H by [x] • (g ∗H) = x · g ∗H for any [x] ∈ S

F and

g ∗ H ∈ G
H . It is obvious that • is well defined, according to Proposition 3.9

and Theorem 3.14.
For any f ∗H, g ∗H ∈ G

H and [x], [y] ∈ S
F , we have:

(SH1): It is obvious that [1] • (g ∗H) = 1 · g ∗H = g ∗H. Therefore, (SH1)
holds.
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(SH2): [x] • ((f ∗ H) ∗G
H

(g ∗ H)) = [x] • ((f ∗ g) ∗ H) = x · (f ∗ g) ∗ H =

(x · f ∗ x · g) ∗H = (x · f ∗H) ∗G
H

(x · g ∗H) = [x] • (f ∗H) ∗G
H

[x] • (g ∗H).

Therefore, (SH2) holds.
(SH3): ([x] � S

F
[y]) • (g ∗ H) = [x �S y] • (g ∗ H) = (x �S y) · g ∗ H =

x · (y · g) ∗H = [x] • (y · g ∗H) = [x] • ([y] • (g ∗H)). Therefore, (SH3) holds.
(SH4): ([x] ∧ S

F
[y]) • (g ∗ H) = [x ∧S y] • (g ∗ H) = (x ∧S y) · g ∗ H =

(x · g ∧S y · g) ∗H = (x · g ∗H) ∧G
H

(y · g ∗H) = [x] • (g ∗H) ∧G
H

[y] • (g ∗H).

Therefore, (SH4) holds.
(SH5): ([x] → S

F
[y]) • (g ∗ H) = [x →S y] • (g ∗ H) = (x →S y) · g ∗ H =

(g∗(x·g →S y·g))∗H = (g∗H)∗G
H

((x·g →G y·g)∗H) = (g∗H)∗G
H

((x·g∗H)→G
H

(y · g ∗ H)) = (g ∗ H) ∗G
H

([x] • (g ∗ H) →G
H

[y] • (g ∗ H)). Therefore, (SH5)

holds. Therefore, G
H is a module of the semihoop S

F . �

Definition 3.20. Let G be a module of the semihoop S. Then G is called a
torsion free module, if x · g = 1 implies x = 1 or g = 1, for any x ∈ S and
g ∈ G.

Example 3.21. H = {1} can generate a torsion free submodule of G in Ex-
ample 2.2.

Theorem 3.22. Let G be a module of the linear bounded semihoop S and H
be a filter of the module G. If H is a prime submodule of G if and only if
C = (H : G) ∪ {1} is a filter of S and G

H is a torsion free module of S
C .

Proof. Since G is a module of the linear bounded semihoop S, there exists an
operation · : S ×G→ G defined by (x, g) 7→ x · g.

IfH is a prime submodule ofG and is a filter ofG, then C = (H : G)∪{1} is a
filter of S, according to Lemma 3.18, then we define an operation • : S

C×
G
H →

G
H

by [x]• (g ∗H) = x · g ∗H for any [x] ∈ S
C and g ∗H ∈ G

H . We have proved that
G
H is a module of S

C . We want to prove that G
H is a torsion free module of S

C .
Assume [x] • (g ∗H) = 1 ∗H = H, we can get that [x] • (g ∗H) = x · g ∗H = H
and so x · g ∈ H. Since H is a prime submodule of G, we have x ∈ (H : G)
or g ∗ H = H. Since x → 1, 1 → x ∈ C = (H : G) ∪ {1}, we can conclude
that [x] = [1]. We can get that if [x] • (g ∗H) = 1 ∗H = H, then [x] = [1] or
g ∗H = H = 1 ∗H. Therefore, G

H is a torsion free module of S
C .

If C = (S : G) ∪ {1} is a prime ideal of S and G
H is a torsion free module of

S
C , then we define an operation • : S

C ×
G
H →

G
H by [x] • (g ∗H) = x · g ∗H for

any [x] ∈ S
C and g ∗H ∈ G

H . We want to prove that H is a prime submodule of
G. If x · g ∈ H, for x ∈ S and g ∈ G, then we have [x]• (g ∗H) = x · g ∗H = H.
Since G

H is a torsion free module of S
C , we have [x] = [1] or g ∗ H = H. We

have x→ 1, 1→ x ∈ C = (H : G) ∪ {1}. Therefore, x ∈ (H : G) or g ∈ H. �

Proposition 3.23. Let S1 = (S1,�S1
,→S1

,∧S1
, 1) and S2 = (S2,�S2

,→S2

,∧S2
, 1) be two semihoops and f : S1 → S2 be a homomorphism. If G is a

module of S2, then G is a module of S1.
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Proof. Let S1 = (S1,�S1 ,→S1 ,∧S1 , 1) and S2 = (S2,�S2 ,→S2 ,∧S2 , 1) be two
semihoops and f : S1 → S2 be a homomorphism. Since G is a module of S2,
we have the operation of modules · : S2 × G → G defined by (a, g) 7→ a · g
for any a ∈ S2 and g ∈ G. Now, we define the operation ·1 : S1 × G → G
by x ·1 g = f(x) · g, for any x ∈ S1 and g ∈ G. For x, y ∈ S1, if x = y, then
f(x) = f(y) and so x ·1 g = f(x) · g = f(y) · g = y ·1 g. It means that ·1 is
well-defined. We prove that G is a module of S1. For any x, y ∈ S1 and g ∈ G,
we have:

(SH1) 1S1
·1 g = f(1S1

) · g = 1S2
· g = g;

(SH2) x ·1 (g ∗ f) = f(x) · (g ∗ f) = f(x) · g ∗ f(x) · f = x ·1 g ∗ x ·1 f ;
(SH3) (x�S1 y) ·1 g = f(x�S1 y) ·g = (f(x)�S2 f(y)) ·g = f(x) · (f(y) ·g) =

f(x) · (y ·1 g) = x ·1 (y ·1 g);
(SH4) (x∧S1

y)·1g = f(x∧S1
y)·g = (f(x)∧S2

f(y))·g = f(x)·g∧Gf(y)·g =
x ·1 g ∧G y ·1 g;

(SH5) (x→S1
y)·1g = f(x→S1

y)·g = (f(x)→S2
f(y))·g = g∗(f(x)·g →G

f(y) · g) = g ∗ (x ·1 g →G y ·1 g).
Therefore, G is a module of the semihoop S1. �

Proposition 3.24. Let S1 and S2 be two bounded semihoops and f : S1 → S2

a homomorphism. Then kerf = {x ∈ S1|f(S1) = 1S2
} and Imf = {f(x)|x ∈

S1} are semihoops.

Proof. kerf = {x ∈ S1|f(S1) = 1S2
} is a nonempty subset of S1, since f(1S1

) =
1S2

, we have 1S1
∈ kerf . We only need to prove that kerf is closed under

operations �, →, and ∧. For any x, y ∈ kerf , we have:
(1) f(x�S1 y) = f(x)�S2 f(y) = 1S2 �S2 1S2 = 1S2 .
(2) f(x→S1 y) = f(x)→S2 f(y) = 1S2 →S2 1S2 = 1S2 .
(3) f(x ∧S1

y) = f(x) ∧S2
f(y) = 1S2

∧S2
1S2

= 1S2
.

Therefore, kerf = {x ∈ S1|f(S1) = 1S2
} is a semihoop.

It is clear that Imf = {f(x)|x ∈ S1} ⊆ S2. We only need to prove that
0, 1 ∈ Imf and Imf are closed under operations �,→, and ∧. Since f(1) = 1S2

, we have 1S2 ∈ Imf .
Let f(x), f(y) ∈ Imf for any x, y ∈ S1. Since S1 is a bounded semihoop,

we have x�S1
y ∈ S1, x→S1

y ∈ S1, and x ∧S1
y ∈ S1. Then,

(1) f(x)�S2
f(y) = f(x�S1

y) ∈ Imf = {f(x)|x ∈ S1}.
(2) f(x)→S2

f(y) = f(x→S1
y) ∈ Imf = {f(x)|x ∈ S1}.

(3) f(x) ∧S2 f(y) = f(x ∧S1 y) ∈ Imf = {f(x)|x ∈ S1}.
(4) 0S2 = f(0) ∈ Imf .
Hence Imf is closed under operations �, →, and ∧. We can conclude that

Imf is a subalgebra of S2. Therefore, Imf = {f(x)|x ∈ S1} is a bounded
semihoop. �

Definition 3.25. Let G1 and G2 be two modules of the semihoop S. Then
the map f : G1 → G2 is called a module homomorphism if for any g1, g2 ∈ G1

and x ∈ S, it satisfies with
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(i) f(g1 ∗G1 g2) = f(g1) ∗G2 f(g2);
(ii) f(x · g1) = x · f(g1).

Example 3.26. Let G1 = {0, a, 1} and G2 = {0, α, 1} be modules of the semi-
hoop S. We can get that (G1,�G1

,→G1
,∧G1

, 1) and (G2,�G2
,→G2

,∧G2
, 1) are

semihoops and we define G1 = ({0, a, 1}, ∗G1
, 1) and G2 = ({0, α, 1}, ∗G2

, 1) are
Abelian groups and group operations on G2 and G2 as shown in Table 17 and
Table 18, respectively.

∗G1
0 a 1

0 a 1 0
a 1 0 a
1 0 a 1

Table 17

∗G2
0 α 1

0 α 1 0
α 1 0 α
1 0 α 1

Table 18

We define the operation ·G1
: S ×G1 → G1 by x · g1 = g1 and the operation

·G2
: S ×G2 → G2 by x · y2 = y2, for every x ∈ S, g1 ∈ G1 , and y2 ∈ G2.

There exists a map f : G1 → G2, in which f(1) = 1, f(0) = 0, and f(a) = α.
We can easily examine that f(g1 ∗ g2) = f(g1) ∗ f(g2) and f(x · g1) = f(g1) =
x · f(g1), for any g1, g2 ∈ G1 and x ∈ S. Therefore, the map f is a module
homomorphism, according to Definition 3.25.

Note: If f : G1 → G2 is a surjective mapping, then we call the module
homomorphism f : G1 → G2 is a module surjective homomorphism.

Proposition 3.27. Let G1 and G2 be two modules of the semihoop S and
f : G1 → G2 be a homomorphism of semihoops. If f : G1 → G2 is also a
module surjective homomorphism, then

(i) kerf = {g ∈ G1|f(g) = 1} is a submodule of G1. If H is a submodule of
G2, then f−1(H) is a submodule of G1.

(ii) Imf = {f(g)|g ∈ G1} is a submodule of G2. If H is a submodule of G1,
then f(H) is a submodule of G2.

Proof. (i) For any x ∈ S and g ∈ kerf , we have f(x · g) = x · f(g) = x · 1 = 1.
We can get that x · g ∈ kerf . Therefore, kerf = {g ∈ G1|f(g) = 1} is a
submodule of G1.

Let H be a submodule of G2. It is clear that f−1(H) ⊆ G1. For any x ∈ S
and g ∈ f−1(H), we can get that x · h ∈ H and g = f−1(h) for h ∈ H. We
have x · g = x · f−1(h) = f−1(x · h) ∈ f−1(H). Then f−1(H) is a submodule
of G1.

(ii) For any x ∈ S and t ∈ Imf = {f(g)|g ∈ G1}, there is t = f(g) for
g ∈ G1. So, we have x · t = x · f(g) = f(x · g). Since G1 is a module of
the semihoop S, we have x · g ∈ G1. Therefore, x · t ∈ Imf . Therefore,
Imf = {f(g)|g ∈ G1} is a submodule of G2.
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If H is a submodule of G1. It is clear that f(H) ⊆ G2. For any x ∈ S
and g ∈ f(H), we can get that g = f(h) and x · h ∈ H for h ∈ H. We have
x · g = x · f(h) = f(x · h) ∈ f(H). Therefore, f(H) is a submodule of G2. �

Theorem 3.28. Let G1 and G2 be two modules of the semihoop S and f :
G1 → G2 be a homomorphism of semihoops. If f : G1 → G2 is also a module
surjective homomorphism, then H is a prime submodule of G2 if and only if
f−1(H) is a prime submodule of G1.

Proof. Let G1 and G2 be two modules of the semihoop S and f : G1 → G2 be
a module surjective homomorphism.

Let H be a prime submodule of G2. f−1(H) is a submodule of G1, according
to Proposition 3.27. If x · g ∈ f−1(H), for x ∈ S and g ∈ G1. We have x · g =
f−1(h) for h ∈ H. We can conclude that x ·f(g) = f(x ·g) = ff−1(h) = h ∈ H.
Since H is a prime submodule of G2, we have f(g) ∈ H or x ∈ (H : G2) =
{x ∈ S|x · G2 ∈ H}. If f(g) ∈ H, then we have f(g) = h for h ∈ H. We can
get that f−1(f(g)) = f−1(h) ∈ f−1(H). If x ∈ (H : G2) = {x ∈ S|x ·G2 ∈ H},
then we have x · g2 = h for h ∈ H and any g2 ∈ G2. We can conclude that
x · f−1(g2) = f−1(x · g2) = f−1(h) ∈ f−1(H) for any f−1(g2) ∈ G1. Therefore,
g ∈ f−1(H) or x ∈ (f−1(H) : G1) = {x ∈ S|x ·G1 ∈ f−1(H)}.

Let f−1(H) be a prime submodule of G1. We have ff−1(H) = H is a
submodule of G2, according to Proposition 3.27. If x · g ∈ H, for x ∈ S and
g ∈ G2. We can get that x · f−1(g) = f−1(x · g) ∈ f−1(H). Since f−1(H) is
a prime submodule of G1, we have f−1(g) ∈ f−1(H) or x ∈ (f−1(H) : G1) =
{x ∈ S|x · G1 ∈ f−1(H)}, according to Definition 3.15. If f−1(g) ∈ f−1(H),
then we have f−1(g) = f−1(h) for h ∈ H. We can get that g = ff−1(g) =
ff−1(h) = h ∈ H. If x ∈ (f−1(H) : G1) = {x ∈ S|x · G1 ∈ f−1(H)}, then
we have x · g1 = f−1(h) for h ∈ H and any g1 ∈ G1. We can conclude that
x · f(g1) = f(x · g1) = ff−1(h) = h ∈ H. Therefore, g ∈ H or x ∈ (H : G2) =
{x ∈ S|x ·G2 ∈ H}. �

Definition 3.29. Let G be a module of the semihoop S. If for any submodule
H of G and there exists a filter F of S such that H = F ·G, then we call G is
a multiplication module.

Example 3.30. In example 3.3, if we define · : S ×G → G by (x, g) 7→ x · g,
in which, 1 · g = g, a · g = g, 0 · 0 = 0, 0 · 1 = 0, and 0 · α = 0, for any x ∈ S
and g ∈ G, then we can examine the group G = ({0, α, 1}, ∗, 1) is a module
of S. Since 0 · 1 = 0 ∈ {1}, H = {1} is not a submodule of G. We can find
the submodule of G only has itself and we have G = F · G for filter F of S.
Therefore, the module G is a multiplication module.

Proposition 3.31. Let G be a module of the semihoop S. If G is a multipli-
cation module, then H = (H : G) ·G, for any submodule H of G.
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Proof. Let G be a module of the semihoop S and H be a submodule of G. Since
G is a multiplication module, there exists a filter F of S such that F ·G = H.
Hence, we have F ⊆ (H : G). We can get that H = F ·G ⊆ (H : G) ·G.

If x ∈ (H : G) · G, then x = y · g for some y ∈ (H : G) and g ∈ G. Since
y ∈ (H : G), we have x = y · g ∈ H. Therefore, (H : G) ·G ⊆ H. �

Definition 3.32. Let G be a module of the semihoop S. G is called a comulti-
plication module, if there exists a filter F of S such that H = {g ∈ G|F ·g = 1}
is a submodule of G.

Example 3.33. It is obvious that F = {b, 1} is a filter of S in Example 3.2.
Since we define · : S ×G→ G by x · g = g, for any x ∈ S and g ∈ G, we have
x · 1 = 1 and x · g = g 6= 1 for any x ∈ F and g ∈ G \ {1}. Therefore, H = {1}
and it is clear that H = {1} is a submodule of G. Then G is a comultiplication
module.

However, in Example 3.30, we can find that F1 = {1} and F2 = {0, a, 1} are
all filters of S and we can get that H1 = {g ∈ G|F1 · g = 1} = {1} is not a
submodule of G, since 0 · 1 = 0 /∈ {1} and H2 = {g ∈ G|F2 · g = 1} = Ø is also
not a submodule of G. Therefore, G is not a comultiplication module.

Note: Let G be a module of the semihoop S and H be a submodule of G.
We define AH = {x ∈ S|x ·H = 1}.

Proposition 3.34. Let G be a comultiplication module of the semihoop S.
Then there exists a submodule H of G such that H = {g ∈ G|AH · g = 1}.

Proof. If G is a comultiplication module of the semihoop S, then there exists
a filter F of S such that H = {g ∈ G|F · g = 1} is a submodule of G. Hence,
we can get that F ·H = {1}.

For any b ∈ F and h ∈ H, we have b · h = 1. This implies that b ∈ AH =
{x ∈ S|x ·H = 1}. Hence, we can conclude that F ⊆ AH . For any y ∈ {g ∈
G|AH · g = 1}, we have AH · y = 1 and F · y = 1, since F ⊆ AH . Therefore,
y ∈ {g ∈ G|F · g = 1}, and so {g ∈ G|AH · g = 1} ⊆ {g ∈ G|F · g = 1} = H.
For any h ∈ H ⊆ G, we have AH · h = 1, and so h ∈ {g ∈ G|AH · g = 1}.
Hence, H ⊆ {g ∈ G|AH · g = 1}.

Therefore, H = {g ∈ G|AH · g = 1}. �

Definition 3.35. A module G of the semihoop S satisfies the ascending chain
condition on submodules if for every chain G1 ⊆ G2 ⊆ G3 · · · of submodules
of G, there exists n ∈ N such that Gk = Gn for any k ≥ n. A module G of
the semihoop S satisfies the descending chain condition on submodules if for
every chain G1 ⊇ G2 ⊇ G3 · · · of submodules of G, there exists n ∈ N such that
Gk = Gn for any k ≥ n.

Example 3.36. We can find that G1 = {1} and G2 = {0, α, 1} are all submod-
ules of the module G in Example 3.3. Since S1 ⊆ S2, the module G satisfies
the ascending chain condition.
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Theorem 3.37. Let G be a comultiplication module of the semihoop S with
the ascending chain condition. If for any submodule H of G such that H =
{g ∈ G|AH · g = 1}, then G satisfies the descending chain condition.

Proof. Assume G1, G2, G3, . . .are submodules of G such that G1 ⊇ G2 ⊇ G3 ⊇
· · · ⊇ Gn ⊇ · · · is a descending chain of the module G. If Gi ⊇ Gj , where
i ≤ j and for any x ∈ {s ∈ S|s · Gi = 1}, then we have x · Gi = 1. We
can conclude that x · Gj = 1 and x ∈ {s ∈ S|s · Gj = 1}. Therefore, {s ∈
S|s · Gi = 1} ⊆ {s ∈ S|s · Gj = 1}. We can get that {s ∈ S|s · G1 = 1} ⊆
{s ∈ S|s · G2 = 1} ⊆ · · · ⊆ {s ∈ S|s · Gn = 1} ⊆ · · · . We can conclude that
AG1

⊆ AG2
⊆ AG3

⊆ · · · ⊆ AGn
⊆ · · · , which is an ascending chain of S.

Since S satisfies the ascending chain condition, there exists n ∈ N such that
AGk

= AGn
, for any k ≥ n.

We have Gn = {g ∈ G|AGn · g = 1}, since H = {g ∈ G|AH · g = 1} for
any submodule H of G. For any g ∈ Gn. Then AGn · g = AGk

· g = 1, that
is, g ∈ Gk = {g ∈ G|AGk

· g = 1}. Hence Gn ⊆ Gk, for any k ≥ n. We can
get that Gn = Gk, for any k ≥ n. Therefore, G satisfies the descending chain
condition. �

4. Conclusion

In this paper, we have introduced the definitions of modules on semihoops
and provided some examples to illustrate it. Moreover, we find that if the semi-
hoop G can generate an Abelian group, then G is a module of any subalgebra
S of the semihoop G. Subsequently, we have introduced the concepts of prime
submodules, torsion free modules, multiplication modules, and comultiplica-
tion modules and explored the relationships among them through employing
the concepts homomorphism, filter, and quotient structure. Finally, we find
that if G is a comultiplication module of S with the ascending chain condition,
then G satisfies the descending chain condition. We use modules of semihoops,
to investigate their impact on the substructure of semihoops and further study
their representation. We also hope to extend the structure of modules of semi-
hoops to fuzzy logic and uncertain information. In future work, we will study
the fuzzy submodules and topological submodules of semihoops, give character-
izations regarding them, and investigate the relationship between these special
submodules and the descending chain condition.
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