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Abstract. This paper explores graph embedding techniques for effec-
tively analyzing large, heterogeneous graphs with complex and noisy pat-

terns. Graphs represent data through nodes (entities) and edges (rela-

tionships), and when dealing with large-scale data, effective search meth-
ods are crucial. Graph embedding helps evaluate node significance and

transforms data into latent space representations. It also addresses chal-

lenges like handling multi-label data in heterogeneous networks, where
nodes may have multiple labels describing complex concepts. Traditional

methods struggle with such multi-label scenarios and fail to capture label
dependencies. The paper introduces a Graph Neural Network (GCN)-

based node embedding method, which extends traditional neural networks

to graph data. GCNs allow the extraction of local features from nodes
and their neighbors, making them useful for heterogeneous networks. By

integrating label information into the embedding process, the method im-

proves relationships between labels. The proposed approach transforms
neighboring labels into continuous vectors, structured into a matrix for

learning. This enhances the overall network embedding. The method

outperforms previous techniques, demonstrating improved performance
on real-world datasets, such as a 2.4% improvement on the IMDB dataset

and 9.3% on the DBLP dataset. The paper discusses graph embedding

techniques in the first section and explores the potential of multi-label
embedding in non-uniform graphs, suggesting future research directions

in the final section. The article’s code link on GitHub can also be found
at the following: https://github.com/sajadbastami/GCN.

Keywords: Graph embedding (GE), Multi-label (ML), Graph neural net-
work (GNN), Heterogeneous network (HN), Weight learning (WL), Social

Networks.
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1. Introduction

Machine learning predominantly relies on weight learning, representing in-
stances through feature vectors and labels [1]. Traditional models focus on
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observational learning, where each example signifies a distinct concept. In con-
trast, deep learning models frequently encounter datasets with multiple labels
across various media, including YouTube videos, Instagram photos, newspaper
articles, and genomic sequences. Multi-label node classification is crucial as
it allows for the categorization of nodes with multiple labels in domains like
machine learning, computer vision, and data mining. The primary problem is
to develop effective techniques for enhancing the classification of nodes beyond
a single label. The research questions guiding this study are:

(1) How can single-label classification algorithms be adapted for multi-
label challenges?

(2) What are the limitations of current techniques, and how can they be
overcome?

(3) How can deep learning facilitate multi-label classifications using struc-
tured data, social networks, and knowledge graphs?

Multi-label node classification finds its applications across various domains,
including machine learning [2], computer vision [3], and data mining [4]. Multi-
label classification involves predicting multiple labels for a single data point,
unlike traditional classification, which predicts a single label. The main chal-
lenges include handling the exponential number of possible label combinations
and capturing dependencies between labels. This discussion centers on the fun-
damental techniques for enhancing the classification of nodes beyond a single
label. Consequently, algorithms designed for single-label classification are be-
ing adapted to address multi-label classification challenges, thereby supplanting
older methods. These algorithms tackle multi-labels by transforming them into
a single-label classification framework. However, certain learning techniques re-
main unsuitable for multi-label data.

In recent years, deep learning has facilitated the development of various clas-
sifications based on structured data, social networks, chemical molecules, and
knowledge graphs [5]. Graphs depict interconnected objects, such as network
graphs, chemical molecules, and knowledge graphs, all of which are linked [6].
Representational learning has expanded to include the multi-label learning
model (MLL). Research in multi-label studies has revealed that MLL can be
segmented into two distinct components: multi-label node classification (MLC)
and label ranking (LR) [7].

Multi-label classification involves categorizing multiple independent classes,
each representing different types. While these methods provided a baseline,
they often failed to capture the interdependencies between labels, leading to
suboptimal performance in complex datasets. Recent years have witnessed the
integration of deep learning techniques in multi-label classification. Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have
been employed to capture spatial and temporal dependencies in data [5]; [6].
Graph Convolutional Networks (GCNs) have further extended these capabili-
ties by leveraging graph structures to enhance node classification [6]. Despite
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these advancements, challenges remain in effectively integrating label informa-
tion and graph structures.

To classify multi-labels, two phases are necessary: transforming the problem
and ensuring algorithm compatibility [7]. Conversely, label ranking involves as-
signing a set of predetermined labels to a text and then creating a hierarchy
based on those labels [8]. Graphs, commonly used data structures in computer
science and related fields [9], present a significant challenge in graph-based ma-
chine learning—effectively integrating graph property information. The pri-
mary learning methods are categorized as supervised (or semi-supervised) and
unsupervised. In unsupervised learning, graph nodes are positioned within a
continuous vector space without relying on labels such as edges, subgraphs,
or the entire graph. “DeepWalk” [10] emerged as an early attempt to adapt
skip-gram models for graph embeddings, which are employed in training for
multi-label classification.

To determine each node’s embedding, DeepWalk employs NLP techniques
and models probability distributions [11]. DeepWalk is an algorithm that
learns latent representations of vertices in a graph by modeling a stream of
short random walks, capturing neighborhood similarity and community mem-
bership. NLP techniques involve processing and analyzing natural language
data to understand and generate human language, often using methods like
word embeddings and neural networks. The algorithm uses unbiased random
walks to enhance the probability of incorporating nodes into a graph. However,
these methods often overlook the rich label information inherent in multi-label
datasets. Future research should aim to develop models that can seamlessly
integrate structural and label information, thereby enhancing the overall classi-
fication accuracy. Multi-label learning methods have received limited attention
in graph-based systems [12].

For node embedding, auxiliary information is integrated to combine struc-
tural and non-structural data into node vectors [13]. In addition, knowledge
graph information can assist in gauging the correlation between nodes and
human perception. When regarded as supplementary information, this can
improve the embedding of nodes within a meaningful space [14]; [15]. Some re-
searchers have proposed the use of deep neural networks [16]; [17] to effectively
learn representations of nodes in graph structures. A team [14] developed a
deep natural language processing model for collaborative learning that incor-
porates node structure, content, and labels.

Analyzing the labels aids in understanding the representations of nodes
within node embedding algorithms. Huang et al. [13] introduced a structural
approach named Lane, which integrates labels into a featured network. To
capture common meanings among nodes accurately, it is crucial for existing
methods to consider the interplay of labels. Heterogeneous graphs, composed
of various nodes and links, offer valuable insights when analyzed collectively.
This paper addresses the challenge of extracting label information from nodes
with multiple labels in networks. It emphasizes the multi-label classification of
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nodes, where each node is labeled. The issue can be approached as graph-based
observer learning by leveraging label information on the nodes.

Graph-based learning uses graph structures to represent and analyze data,
capturing relationships and dependencies between entities. Graph Convolu-
tional Networks (GCNs) extend traditional neural networks to graph data,
enabling the extraction of local features from nodes and their neighbors. This
paper utilizes Graph Neural Networks (GCNs) to transform neighboring labels
into continuous vectors, which are then structured into a two-dimensional ma-
trix for learning. The proposed method, based on a Graph Neural Network
(GCN), effectively integrates label information into the embedding of hetero-
geneous networks, enhancing relationships between labels. Unlike traditional
methods that often fail to handle multi-label data and capture label dependen-
cies, this approach demonstrates superior performance with real-world data.
However, it may face challenges in scalability and computational complexity
compared to simpler, single-label transformation techniques. While significant
progress has been made, there is a need for more comprehensive evaluations of
existing methods.

Many studies focus on specific datasets or domains, limiting the general-
izability of their findings. Additionally, the scalability of these methods to
large-scale datasets remains an open question. Addressing these gaps will be
crucial for advancing the field of multi-label node classification. The proposed
multi-label node classification approach leverages deep learning models like
CNNs, RNNs, and GCNs to enhance classification across various domains, in-
cluding social networks and chemical molecules. Despite advancements in deep
learning, challenges remain in integrating label information with graph struc-
tures effectively. Our approach utilizes Graph Convolutional Networks (GCNs)
to transform neighboring labels into continuous vectors, structured into a two-
dimensional matrix for learning. This method enhances label relationships in
heterogeneous networks, showing superior performance with real-world data.
Addressing these limitations can lead to more robust and effective multi-label
classification.

Future research should focus on improving scalability and interpretability
to address computational complexity and label dependencies. Practical impli-
cations include significant impacts on social networks, chemical analysis, and
content categorization. This study focuses on enhancing multi-label node clas-
sification in heterogeneous graphs. Solving this problem enables evaluating
connections between node labels and their neighbors, ensuring critical infor-
mation is preserved for more precise graph analysis. Real-world applications
include:

(1) Drug Side Effects and Discovery: Identifying potential drug interac-
tions and side effects by analyzing chemical compound networks.
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(2) Authorship Networks: Understanding relationships between authors
and publications, which can assist in co-authorship predictions and
expertise identification.

(3) Social Media Analysis: Categorizing user-generated content with mul-
tiple themes or topics, which aids in content recommendation and sen-
timent analysis.

This paper proposes three main contributions:

• Enhanced label representation: Our approach effectively captures the
interdependencies between labels, leading to more accurate classifica-
tions.
• Improved scalability: We develop a scalable algorithm that can handle

large-scale multi-label datasets efficiently.
• Enhanced interpretability: Our model provides insights into the decision-

making process, enabling better understanding and analysis of the clas-
sification results.

1.1. Scope of the article. This article delves into the methods of embedding
nodes with multi-labels within a heterogeneous graph. It elaborates on the
concept of a multi-label graph, where each sample is linked to features and
several labels. In such a network, the labels are interwoven with the topological
structure, which complicates the content. The process of learning a multi-label
graph representation poses challenges due to the distinctive traits that the
nodes’ labels exhibit.

1.2. An overview of the article’s structure. The structure of this article
is as follows: Section 2 presents definitions and establishes the variables used.
Section 3 reviews related work, existing methods, and their classifications.
Subsections 3-1, 3-2, and 3-3 detail the proposed approach. Section 4 offers
an analysis and comparison of the preemptive approach from a complexity
standpoint. Section 5 concludes with a discussion of challenges and future
research opportunities.

1.3. Definitions and concepts. In this section, we will cover the fundamental
concepts and definitions that are essential for understanding this article.
Definition 1. Information graph. A graph is G = (V,E) where v ∈ V is a multi-
label node and e ∈ E is an edge. Currently, we examine G using a multi-label
node mapping function and an edge-type mapping function fv = V ßτv. Node
vi ∈ V represents a specific type of node, which is represented by fv(vi) ∈ τv.
Similarly, for eij ∈ E, fe(eij) ∈ τe. τv and τe provide a list of types of nodes
and edges with multi-labels. Definition 2. A heterogeneous graph. Ghete =
(V,E) is a graph that |τe| > 1 or |τv| > 1.
Example 1. As shown in Fig 1, HG represents scientific data.
Definition 3. Multi-label classification. Multi-label classification (MLC) is an
extended form of multi-class classification. MLC assigns multi-labels to samples
simultaneously [18]. X represents the input vector, and Y = yi|i = 1, 2, . . . ,M
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represents the set of labels. When doing node training with multi-labels, you
need to map a function f from the input vector x to the output space 2Y . This
function should determine a subset of the output space for each sample x ∈ X
in the input vector. Graph structures are maintained in a significant space
through proximity criteria, revealing the correlation between nodes and edges,
also known as the first order of proximity.
Definition 4. First-order proximity. There is an edge weight eij between nodes
vi and vj , which is Aij . The nodes connected with a greater weight are likely to
be more similar. First-order proximity is the correlation between two connected
nodes [19]. The vertices vi and vj, if (vj , vi) ∈ E, have a first-order proximity
equal to equal to wi, j. which is the weight of the edge between nodes vj and vi.
Otherwise, the first-order proximity between vi and vj will be zero. First-order
proximity refers to the relationship between nodes that are close to each other.
We are analyzing the similarity between neighboring nodes by comparing their
proximity to second-order nodes. They have more similar neighbors if the
second-order value between two nodes is higher.

Figure 1. A graph illustrates heterogeneous scientific data.

Definition 5. Second-order proximity. The graph between nodes vi and
vj shows the correlation between their neighbors. Vertices (vj , vj) in second-
order proximity are counted if they have any familiar neighbors. It can also be
calculated by considering the probability of a two-step transition between vi and
vj . Definition 6. Embedding heterogeneous graphs. Using the heterogeneous
input graph G = (V,E) and the predetermined embedding dimensions d (d�
|v|), in graph embedding, While preserving as many properties as possible, G is
transformed into a d-dimensional vector. One can use proximity criteria such as
first-order proximity and beyond to measure graph properties [19]. Definition
7. An adjacency matrix. The connections between the nodes are shown, and
the adjacency matrix indicates if two nodes are adjacent through an edge [20].

Definition 8. Meta-path. The meta-path p is defined within a heterogeneous
graph G. It is denoted as:

p = A1�
⊥R1−−−→ A2�

⊥R2−−−→ . . .
⊥Ri−−−→ Ai+1,
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where the types of nodesA1, A2, . . . , Ai+1 ∈ A and the types of linksR1, R2, . . . , Ri ∈
R. The meta-path is used to illustrate relationships between entities. As illus-
trated in Table 1, a summary of the notations is presented.

Table 1 shows a Summary of Related Works.

Table 1. Summary of Related Works.

Notations Explanations

V The set of objects

E The edges of the path

G hete A heterogeneous graph

x Input space

Y Set of labels

2Y Output space

eij Edge weight

v A node v ∈ V

Z Latent space

2. Related Works

The real-world heterogeneous network revolves around individual instances
and their interconnections. The multi-label classification process encompasses
two stages: algorithm adaptation and problem transformation. Graphs con-
taining semantic information are defined as follows. Numerous algorithms have
been adapted from single-label to multi-label classifications. To address this,
we will transform multi-label nodes into one or more nodes with a single label.
Subsequently, we will employ a learning method appropriate for the existing
single-label nodes to process the transformed data effectively. One such method
is the binary relevance (BR) approach, analogous to the one-versus-all strat-
egy used in multi-class scenarios. In BR, each label is modeled independently.
However, this assumption may not hold in all real-world contexts. We also
introduce classification chains (CC). An enhanced method, known as ensemble
classifier chains (ECC), has been proposed. It acknowledges that the sequence
of chains can influence their performance. CC links the classifiers in BR, where
each link in the chain incorporates a feature space that encompasses the labels
of all preceding links.

2.1. Graph embedding. The comparison encompasses graph embedding [21],
the operation types for input and output, and the utilized attention mecha-
nisms. The majority of embedding methods proposed are tailored for homoge-
neous networks. Depending on the scenario, the methods for monitoring and
adapting inputs may differ. Homogeneous networks feature two embedding ap-
proaches: supervised and unsupervised. In the algorithms discussed, the input
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graph is static and inductive. Often, the nodes and edges of a graph undergo
changes through inductive adjustments. The recommended methods are adapt-
able, readily integrating new nodes, thereby rendering them scalable. While
numerous embedding techniques exist for homogeneous graphs, these must be
applicable to various network types, each with distinct characteristics. The
challenges associated with such networks have been thoroughly investigated,
as they are more pronounced in real-world applications. Embedding methods
can be evaluated in the operation type settings, independent of the input data
type [22]. These methods are categorized into four stages: node embedding,
edge embedding, combined embedding, and entire graph embedding. The clas-
sification of embedding methods is based on the attention type they employ.
Multi-label embedding techniques have been developed to manage extensive
label spaces. These methods aim to accelerate computation and enhance the
representation of conventional information by reducing the dimensions of the
label space. This reduction is achieved by identifying models that are more dis-
tinctive than the label assignment matrix [23]. As a decision-maker in labeling,
I have devised novel embedding methods that depend on statistical analysis,
employing multivariate regressions and weak classifiers [23].

2.2. GCN with a Structured Label Space. A dependable method for ad-
dressing multi-class classification tasks is the integration of deep neural net-
works (DNNs) with graph convolutional networks (GCNs) [24]. This technique
employs GCNs to encode the label structure and uses convolutional graph layers
to derive features from latent variables, effectively interpreting label features.
The entire network undergoes training as a deep learning model. The signif-
icance of neighboring nodes influences the probability value of each node in
the graph. Every node or label possesses a vector representation. To ascertain
the value of each label, this vector is transformed into a scalar. The input
representation z = f(x; f ) and each label yi are embedded into a vector vi.
Node, in this case, the vector hi = [z; vi], represents the label concatenation of
the hidden input representation z and the label vector vi. Between the output
weights and the hidden representation of input z, the output feature vector ui
labeled yi is encoded. The label score Fi is obtained by Fi = ui(z) + ui(vi),
where ui is the i-th row of U. To convey more detailed information, labels are
encoded using vector representations [25].

2.3. Label-Aware GCN. When nodes and their neighbors share the same
label, this is viewed positively; conversely, differing labels between them are
viewed negatively. Edge classifiers refine graph structures by converting them
into label-aware (LA) graph structures. This is achieved by eliminating nega-
tive neighbors and integrating unconnected yet positively labeled nodes as new
neighbors. Enhanced GCN models can bolster their graph evaluation perfor-
mance by training directly on the LA graph. In the analysis of LA graphs, the
positive ratio serves as an indicator of the number of valuable neighbors, with a
higher positive ratio correlating to improved GCN performance. This concept
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posits that the primary categorization significantly influences graph classifica-
tion effectiveness by establishing the fundamental criteria for a valuable edge
categorization. Rigorous experiments on benchmark datasets have shown that
LAGCN markedly improves the performance of existing GCN nodes, especially
when the underlying graph exhibits a low positive ratio. Regarding node clas-
sification, LAGCN has been demonstrated to significantly boost the efficacy of
GCN models, as detailed in the study referenced in [26]. These node classifi-
cation tests were conducted using the benchmark dataset.

2.4. Classification of multi-label graph nodes using semi-supervised
graph embedding. ML-GCN is a multi-label classification method based on
GCN. It integrates multi-labels and nodes within the same space, enabling
simultaneous label-label and label-node correlations. ML-GCN features two
embedding sets: one for labels and another for both nodes and labels. GCN is
utilized to merge node features with graph information, embedding labels and
nodes into a cohesive vector space. Subsequently, a label matrix is generated at
random, with each label vector signifying a distinct label type. Throughout the
ML-GCN training phase, label and node vectors are amalgamated [27]. The
skip-gram model is employed to discern correlations between node labels and
label labels. Each neural network layer uses graph convolution operations to
forge robust non-linear correlations among nodes. Label correlation is quan-
tified by treating each label as a vector. The addition of closely associated
labels reduces the distance between two nodes in the latent space. Training
multi-label classifiers involves displaying all nodes on a graph and predicting
labels for the unlabeled ones. The ML-GCN method applies a sigmoid layer to
facilitate downstream learning [28].

3. Preliminaries

In this section, we define the notation that will be consistently employed
throughout this study, examine the principles underlying heterogeneous graph
classification, offer a concise overview of Heterogeneous graph neural network,
and introduce the social networks case study chosen for our analysis.

3.1. Notation. A list of mathematical symbols for a heterogeneous graph and
vector representations for its nodes and edges is provided. The heterogeneous
graph G = (v, ε) contains the set of vertices v and the set of links ε. There
is a node mapping function φ(v) : v → A and an edge mapping function
φ(ε) : ε → R. Here, A and R refer to the type of node and edge, respectively.
It is given that A+R ≥ 3.

Each node contains various features and content, which may differ from one
another. Therefore, each object v ∈ V belongs to a specific class of object
φ(v) ∈ A, and each link e ∈ ε is part of a special relationship φ(e) ∈ R.
Throughout this article, we will include additional symbols as needed.
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3.2. Heterogeneous graph neural network. In heterogeneous neural net-
works, operations are conducted in four phases to extract meaningful informa-
tion: (1) Extracting the heterogeneous neighbors. (2) Encoding the heteroge-
neous information of the node. (3) aggregating the heterogeneous neighbors.
(4) Determining the objective function and training the network. To compre-
hend the characteristics of each node through their first-order neighborhood, it
is necessary to ascertain the neighborhood information for each node. Unlike
homogeneous graphs, it is not always feasible to extract feature information in
a similar manner for heterogeneous graphs. Consequently, to access the con-
tent of each node, it is crucial to adjust the types and dimensions of features.
This process entails the extraction of diverse content, including the embed-
ded content within nodes. Neural networks are capable of amalgamating the
characteristics of dissimilar neighbors.

4. Method proposed

The foundational step in graph embedding techniques, such as DeepWalk
[15] and node2vec [8], is the employment of a random walk process to capture
the relationships between nodes. Random walks facilitate the embedding of the
entire graph into node paths that reflect neighborhood relations. This method
retains structural information during the embedding of all training instances,
from context nodes to target nodes [29]. Node labels provide insights into the
nodes themselves. To gauge the proximity of nodes, one may rely solely on
individual and concealed labels. For an enhanced node embedding, it is im-
perative that the representations of nodes and their labels coincide within the
representation space. Ignoring a node’s multi-labels can lead to the omission
of some features, as current methods typically adopt the simple paradigm of
graph label embedding (SLNE), which does not consider all labels [13]; [15].
This section introduces a learning model that accounts for label correlation,
aiming to resolve the challenges of embedding graph nodes in multi-label clas-
sification (MLC) [23]. Our proposed algorithm encompasses feature extraction,
node encoding, and GCN training. In heterogeneous graphs, nodes with mul-
tiple labels form distinct connections based on their types. Classifying nodes
with multiple labels necessitates the analysis of meta-paths and their weighted
correlations [30] to accurately predict the node’s labels. We extract meta-paths
to illustrate the relationships among different nodes in the network and then
determine path weights through a learning process. Our approach identifies
each node’s meta-path and assigns weights to these meta-paths according to
the neighborhood matrix’s outline. Subsequently, we assess the correlation be-
tween node labels by applying these weights. Nodes are classified based on the
assigned weights to their meta-paths, enabling us to gauge the connectivity
level between nodes and elucidate these paths. To tackle the complexity of
multi-label nodes, we compute the correlations between neighbors via meta-
paths.
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4.1. Analyzing heterogeneous neighbors. To comprehend the correlation
between nodes and their labels, it is essential to analyze the semantic connec-
tions among the nodes within their neighborhoods. Meta-path information is
employed to assess the neighbors of nodes p(1−2), beginning with node p1. As
depicted in Fig 2, nodes p1 and p2 possess neighbors with multiple labels [31],
indicating that a path from p1 to p2 is denoted as p(1.2). This approach facili-
tates improved communication between nodes and yields extensive information
from the paths. We establish a link between the node type that shares a label
and the adjacent node class to maximize the utilization of path information.

Figure 2. Analyzing heterogeneous neighbors for path ex-
traction.

4.2. Training with Meta-path weights. By examining the diverse meta-
paths within the heterogeneous graph, we can enhance the accuracy of multi-
label node classification by training the weights for each meta-path. Each
meta-path offers a distinct assessment of node classification, enabling the pre-
cise calculation of weights based on learned information. Thus, understanding
the importance of a meta-path’s weight in the heterogeneous graph is benefi-
cial, as it provides significant insights. The heterogeneous network structure
establishes a correlation between node labels by learning meta-path weights,
effectively addressing the multi-label problem.

4.3. Learning the weight of neighborhood matrices and meta-path.
The weight for learning is determined by the meta-path obtained from the
neighborhood [32] of each node. For meta-path PL = V S, . . . , E, Source node
Vs and destination node Vt are connected by path PL representing different
types of nodes. The correlation between node Vs and Vt under path PL is
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computed in Eq.(1).

(1) Cor(Vs, Vt | PL) =
z(Vs, Vt)

(
1

deg(Vs)
+ 1

deg(Vt)

)
1

deg(Vs)

∑
i z(Vi, Vs) + 1

deg(Vt)

∑
j z(Vt, Vj)

Here, z(Vs, Vt) represents the eigenvalues of the Neighborhood Matrix Z(PL)
and, deg(Vs) represents the number of edges connected to a vertex Vs. It is
possible to obtain a correlation matrix between different vertices, shown in
Table 2. This table represents a node proximity matrix for a heterogeneous
graph, where the entries indicate the proximity between nodes based on meta-
paths. The loss function of the weight parameter is shown in Eq.(2).

(2) L(θ) =
1

2

∑
(Vi,Vj)∈Vd

∥∥∥∥∥1 + S(Vi, Vj)−
n∑

k=1

θk · Cor(Vs, Vt)

∥∥∥∥∥+
λ

2
‖θ‖2

(3) S(Vi, Vj) =

{
1 if Vi 6= Vj ,

−1 otherwise.

In the data set Vd, the nodes Vi and Vj have the classification label, and a
regularization parameter is called [λ]. Learning the weight of each meta-path
is shown in Eq.(4).

(4)
∂L(θ)

∂θk
= 0

(5)

θk =

∑
(Vi,Vj)∈Vd

S(Vi, Vj) · Cor(Vs, Vt) · (1 + S(Vi, Vj))−
∑n

k=1 θk · Cor(Vs, Vt)

λ+
∑

(Vi,Vj)∈Vd
S(Vi, Vj)2 · Cor(Vs, Vt)2

(6) wi =
θk∑n
r=1 θr

(7) Label =

∑
Vj∈{Vs,Vt} r(i, j)∑

Vj∈{Vs,Vt} r(i, j) +
∑

Vk∈Vd
r(k, d)

Table 2. Heterogeneous graph node proximity matrix based
on meta-paths PL.

v1 ... vi ... vn

v1 0 ... 1 ... 0

... ... ... ... ... ...

vi 0 ... 1 ... p

... ... ... ... ... ...

vn 0 ... 1 ... p
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Table 3 presents the correlation coefficients among various vertices in a net-
work, where each value represents the strength and direction of the linear re-
lationship between pairs of nodes.

Working with heterogeneous networks can be challenging when attempting
to associate an object with a labeled object that possesses multiple labels. Al-
gorithm 1 outlines the weight parameters of the meta-paths upon which the
learning algorithm is predicated. The weight of each meta-path is ascertained
through effective learning from training datasets, and this weight is instru-
mental in calculating the correlation between each object in the dataset. The
algorithm learns weight parameters for a graph using GCN weight vectors. It
initializes parameters ki = 1,2 , . . . ,i and iteratively updates them by calculat-
ing values using specific equations, such as k by Eq.(5). Labels are selected
by Eq.(7) and the training set Vd. is updated in each iteration. Finally, the
weight parameters are learned using Eq.(7). In addition to the weight learning
process, this algorithm leverages the structure of the graph and the relation-
ships between nodes to enhance the accuracy of multi-label classification. By
iteratively refining the parameters and updating the training set, it ensures
that the learned weights are well-suited to capture the complex patterns in the
data. This approach is particularly effective in heterogeneous networks where
different types of nodes and edges exist, making it a robust solution for various
real-world applications. Here r(i,j) indicates the correlation between nodes Vi
and Vj that if there is an edge, it will be adjusted to 1 a meta-path. Otherwise,
it will be changed to 0. Thus, the object is added to the class set, and a label
is assigned. As a result, multi-label nodes can be extended in heterogeneous
networks.

Table 3. Heterogeneous graph node proximity matrix based
on meta-paths PL.

Cor(Vs, Vt) V1 V2 . . . Vi . . . Vn

V1 1 0.4 . . . 0.4 . . . 0.5

V2 0.4 1 . . . . . . . . . 0.3

. . . . . . . . . . . . . . . . . . . . .

Vi 0.4 . . . . . . 1 . . . 0.2

Vn 0.5 0.3 . . . 0.2 . . . 1
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Algorithm 1: Structured graph learning using GCN weight vec-
tors
Algorithm 1: Structured graph learning using GCN weight vectors

G = (V,E); {λ: This parameter controls the regularization process; Vd: Set of data
with nodes that have multi-labels} {Wd: W1,W2, . . . ,Wi}
Begin
Initialize θk = {θ1, θ2, . . . , θi}, k = 1, 2, . . . , n;
t← 0;
While t < N //The number N represents the number of iterations// Compute θk
(using Eq. (5)), k = 1, 2, . . . , n;
Select labels by Eq. (7) and update the training set Vd;
t← t+ 1;
By using Eq. (6), calculate the weight parameter learning;
End

5. The classification of multi-label nodes in heterogeneous
networks using the proposed method and weight learning

Meta-paths represent connections between nodes that carry multiple labels
within a heterogeneous graph, as detailed in reference [33]. We incorporate
the neighborhood matrix into each meta-path and include them in our col-
lection. Fig 3 depicts the node classification structures with multiple labels
in heterogeneous graphs. A meta-path serves to ascertain the neighborhood
matrix among nodes in a heterogeneous graph [26]. For the meta-path PL, A
neighboring matrix is constructed by examining the connections in a hetero-
geneous network, as shown in Table 3. We create a neighboring matrix for
each meta-path type to analyze the graph structure. Then, we use information
from the nodes’ features matrix to classify the nodes with multi-labels. The
limited research on multi-label node classification is largely due to the shortage
of benchmark multi-label graph datasets. Although advancements have been
primarily shown in multi-class classification, the more realistic scenario where
each node can have multiple labels has been overlooked. The main obstacle
in conducting detailed studies on multi-label node classification is the lack of
publicly accessible multi-label graph datasets [34]. The complexity and high
dimensionality of multi-label data make it challenging to obtain accurate la-
bel sets in real-world applications. Noisy label data can negatively impact the
model’s classification performance [35].

Fig 3 illustrates the process of classifying nodes in heterogeneous networks
using multi-labels based on meta-paths. This process can be understood through
the following five steps: 1. Identification of Node Categories: a) The procedure
begins by classifying the nodes into three unique categories: “Subject,” “Het-
erogeneous graphs,” and “Author.” b) Each category comprises nodes (e.g., S1,
S2, S3 for topic) that are linked together, illustrating the relationships within
that category. 2. Single-Label Classification: a) The initial kernel is the nodes
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Figure 3. The stages of the projection function for mapping
to a safe mode to reduce risk factors.

with a single label that represents an initial classification method. 3. Transi-
tion to Multi-Label Classification: a) The subsequent scheme shows nodes with
multi-labels, illustrating the transition to a more complex classification system
where nodes can possess multi-labels. 4. Analyzing Multi-Label Data: a) A
phase starts with the creation of an adjacency matrix and the extraction of
features from the training data using a GCN. b) This part describes the steps
for data processing and weight updating during the classification procedure.
5. Meta-Path Algorithm: a) It generates a weight learning matrix from the
training data and conducts multi-label classification within the heterogeneous
network utilizing meta paths. b) meta-path plays a key role in establishing
connections between various node types, which is essential for multi-label clas-
sification.
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6. Experiments

IMDB: In an online database, you can find information about movies and TV
shows, such as actors, production teams, and storylines. After undergoing data
pre-processing, the IMDB dataset now includes 4278 movies, 2081 directors,
and 5257 actors. Based on their genre information, movies are categorized into
three classes - action, comedy, and drama. Additionally, a set of fictional key-
words is provided for each film. Within the nodes, 9.35% (400) are associated
with film nodes on semiconductor learning models, and the remaining 81.30%
(3478) are related to semiconductor learning model nodes. DBLP: This is a
website that provides computer science bibliographies. Once pre-processing is
complete, the DBLP dataset will have 4057 authors, 14328 articles, 7723 terms,
and 20 sites. The authors represent four research areas: databases, data min-
ing, artificial intelligence, and information retrieval. A set of related keywords
is used to describe authors and their papers. For their study on semiconductor
learning models, the authors divided their nodes into three sets: educational,
validation, and experimental. These sets contained 400 nodes each (9.86% of
the total nodes) and 3257 nodes (80.28%) in the experimental set. Statistics
are summarized from the dataset in Table 4.

Table 4. Heterogeneous graph node proximity matrix based
on meta-paths (PL).

Meta-paths Edges Nodes Datasets

FIA, FAF, IFI, IFAFI,

AFA, AFIFA

#Film(F): 4,278, #Initiator(I):

2,081, #Assistant(A): 5,257,

#F-I: 4,278, #F-A: 12,828

11,616 IMDb

IAI, IAIAI, IAVAI #Inventor(I): 4,057, #Arti-

cle(A): 14,328, #Item(I): 7,723,

#Venue(V): 20, #I-A: 19,645,

#A-I: 85,810, #A-V: 14,328

25,607 DBLP

Experiments were conducted on a system equipped with an Intel® Core™
i7-10750H CPU @ 2.60 GHz, 16.0 GB DDR4 memory, and a Windows 11 Home
64-bit operating system (x64 processor). Table 5 indicates that the accuracy
of classification algorithms has improved by approximately 29.5% with the ex-
pansion of multi-label data in heterogeneous graphs. The most precise results
are obtained by utilizing meta-paths for label classification in heterogeneous
graphs. Fig 4 demonstrates the correlation of multi-label nodes through meta-
paths. The application of three distinct classification algorithms has led to im-
proved accuracy in two datasets, DBLP and IMDB. The graphs show precision
for varying training data proportions (2% to 10%). GCN consistently achieves
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the highest precision across both datasets, followed by SVM and Neural Net-
work. KNN and Random Forest have lower precision but show improvements
with more training data.

Figure 4. Evaluation of the efficiency of classification algo-
rithms based on different meta-paths.

6.1. Analyses of different classification methods. Utilizing the neighbor-
hood matrix of each path in heterogeneous graphs, we classify each node by
employing three methods on the dataset. The meta-path symbolizes the re-
lationship between its influence on the classification of multi-label nodes in
the heterogeneous graph and the outcomes in the specified dataset, which are
detailed with corresponding labels in Table 5. The accuracy of multi-label clas-
sification is enhanced as more significant label data is incorporated. This table
compares the accuracy of different classifiers (KNN, SVM, Random Forest,
Neural Network, and GCN) on IMDB and DBLP datasets with varying train-
ing data percentages. GCN consistently shows the highest accuracy across
both datasets. SVM and Neural Network also perform well, especially with
more training data. KNN and Random Forest improve with more data but
generally have lower accuracy compared to GCN, SVM, and Neural Network.

As the dataset size increases, the performance accuracy improves. For ex-
ample, when evaluating the IMDB dataset, the GCN method demonstrates an
accuracy of approximately 98.9% within the 2% to 8% range. Furthermore,
the DBLP dataset achieves the highest accuracy, reaching up to 99.8%. Fig 5
displays the ROC curves representing the favorable rates of various datasets,
encompassing both accurate and inaccurate results. It has also been noted that
the classification performance on the DBLP dataset is markedly different from
that of predicting class labels in the IMDB dataset. The image shows ROC
(Receiver Operating Characteristic) curves for DBLP and IMDB datasets. The
x-axis represents the False Positive Rate, and the y-axis represents the True
Positive Rate, both ranging from 0 to 1. The curves illustrate the trade-off
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Table 5. An overview of the accuracy of different classifiers
on IMDB and DBLP.

Methods IMDB (%) DBLP (%)

2% 4% 6% 8% 2% 4% 6% 8%

KNN 76.2 79.8 85.5 97.4 68.4 69.8 72.1 78.3

SVM 84.8 86.3 90.2 94.7 67.3 71.7 73.6 82.6

Random-forest 75.9 78.3 84.6 92.4 65.2 68.7 74.2 79.3

Neural-network 80.5 86.8 89.7 93.8 65.7 68.5 74.1 81.9

GCN 85.1 91.5 94.8 98.9 69.7 84.4 88.8 99.2

between true positive and false positive rates for different threshold settings.
The graph helps evaluate the performance of binary classification systems on
these datasets. Training typically involves using between 10% to 80% of the

Figure 5. OC curves on DBLP, IMDB.

available data. Generally, having a larger number of training samples leads to
enhanced performance in experiments. Algorithms are evaluated based on their
micro-F1 score performance. Table 6 displays the experimental Micro-F1 re-
sults for the DBLP and IMDB datasets. Table 6 compares the micro-F1 scores
of various methods on IMDB and DBLP datasets with different training data
percentages. The proposed method consistently outperforms other methods,
especially on the DBLP dataset, achieving the highest scores. Metapath2vec
and Gat also perform well, but the proposed method shows superior accuracy.
Node2Vec, DeepWalk, SLNE, and LINE have lower and relatively stable scores
across different training percentages. GCNs effectively capture local graph
structures, showing consistent performance improvements with increased la-
beled data. However, the proposed method outperforms GCNs, especially on
the DBLP dataset, demonstrating superior robustness and effectiveness.
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Table 6. Analyses of the proposed method in comparison
with other micro-F1-based basic methods.

Methods IMDB (%) DBLP (%)

2% 4% 6% 8% 2% 4% 6% 8%

Node2Vec 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2

DeepWalk 28.1 27.8 26.5 26.6 25.8 25.9 24.2 24.7

SLNE 30.8 30.8 30.8 30.8 30.8 29.9 29.9 29.9

LINE 31.6 31.6 31.6 30.9 30.8 29.4 28.7 28.7

Metapath2vec 49.4 50.1 52.3 52.1 93.4 93.9 94.2 94.7

GAT 56.2 57.1 58.4 58.6 77.2 80.3 81.8 83.2

GCN 52.7 53.8 54.5 55.0 78.6 79.9 84.7 88.1

Proposed Method 56.1 57.7 59.2 60.4 96.1 96.5 97.2 97.4

These results establish a definitive connection between the network struc-
ture and the labels. Utilizing labels allows for more straightforward access to
hidden representations. A method that accounts for the learning weight of
the meta-path has shown substantial progress and surpasses other techniques.
The class labels in the training dataset are presented in various formats, en-
abling diverse analytical approaches. The superiority of our method is attrib-
uted not to disparate information sources but to the embedding of graph node
labels within our meta-path framework, facilitating a more comprehensive un-
derstanding. By assigning effective weights to the meta-paths, the proposed
method enhances the correlation among nodes, leading to a more precise latent
representation and classification of multi-label nodes. As indicated, all meth-
ods have shown a relationship between the network structure and the labels.
Given the network’s diversity, expanding the dataset size could further improve
the algorithms’ accuracy.

6.2. A study of the performance impact of heterogeneous graph neu-
ral networks. A proficient latent space embedding technique should effec-
tively encapsulate the most crucial and distinctive features of nodes. This
section compares various methods of differentiating nodes by classifying multi-
layered networks. The proposed method surpasses DeepWalk, Node2vec, SLNE,
and LINE in the dataset, as demonstrated by the superior Micro-F1 scores
across various training ratios. An increase in the training ratio correlates
with enhanced accuracy of the proposed method. In comparison to Deep-
Walk, Node2vec, SLNE, and LINE, the proposed method exhibits a higher
accuracy level, boosting classification performance by 43% to 53%. We have
established a correlation between node labels and meta-path weights using the
proposed method, leading to a significantly improved feature representation.
Employing nodes in a neighborhood model proves highly effective in accurately
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depicting meta-paths between nodes, even in the absence of structural infor-
mation during the modeling process. By leveraging the graph data structure in
the proposed method, a more optimal model is achieved compared to vector-
based approaches. The proposed method has increased the model’s accuracy,
proving to be more efficient in utilizing meta-path-based embeddings than the
initial methods. In calculating the neighborhood matrix between nodes, the
proximity of features within meta-paths is crucial. It is important to recognize
that each method in the educational dataset accesses and manipulates class
nodes distinctively. The recommended approach embeds the network struc-
ture and meta-paths into a latent space to discern the features of each node.
Our proposed method is capable of representing all nodes in a network, both
structurally and textually. This approach is more efficacious compared to other
methods.

7. Conclusion and Future Directions

General methods for integrating graphs from different domains and incor-
porating other features have received considerable attention. However, the
applications of graph embedding have received less attention. In this article,
we will discuss a technique for embedding multi-label data in graphs while fo-
cusing on the concepts of data mining, machine learning, and natural language
processing. We will focus on enhancing networking applications as we look to
the future. This includes improving natural language processing, information
recovery models, and social networks. However, there are still challenges to
be addressed regarding multi-label data categories. Despite advancements in
graphic learning methods for classifying nodes or predicting links, these chal-
lenges still need to be addressed. In heterogeneous graph information, node
classification is performed using several semantic paths. Different paths are
created based on the Meta-path Neighbor Matrix, and the weight of the meta-
path is determined. According to the experimental results using the DBLP
and IMDB data sets, better performance is achieved with more paths. En-
riched connections between nodes are possible in a heterogeneous graph. The
proposed method shows an improvement of up to 2.4% on the IMDB dataset
and up to 9.3% on the DBLP dataset compared to other methods, demon-
strating its superiority in handling multi-label data. Currently, researchers can
explore and tackle various research paths and challenges, including the following
topics: (1) Detection and classification of nodes using high-performance GPU
computing or other parallelization techniques. (2) Non-Euclidean embedding.
(3) Collections of high quality. (4) A large-scale application environment can
be achieved using the proposed method. (5) The detection of hostile attacks on
nodes requires further study. (6) Enhancing the classification system’s accu-
racy, robustness, and consistency by integrating the label-based method with
a feature graph. (7) Reliability issues in multi-label data embedding.
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