

ON FUNDAMENTAL PROPERTIES OF HOM-GROUPS

A.A.A. Agboola ¹⁰ ¹⁰, M.A. Ibrahim ¹⁰, A.O. Adeniji¹⁰, and S.A. Adebisi¹⁰

Article type: Research Article

(Received: 19 September 2024, Received in revised form 15 December 2024) (Accepted: 30 December 2024, Published Online: 02 January 2025)

ABSTRACT. This paper focuses on the study of Hom-groups. A Homgroup $(G, *, \alpha)$ is the non-associative generalization of the classical group G whose associativity and unitality are twisted by a compatible bijective map α . We present more properties of Hom-groups, Hom-subgroups, Hom-normal subgroups, Hom-quotient groups and Hom-group homomorphisms with examples. We prove the Zassenhaus Butterfly Lemma of Hom-groups as a major result of this paper.

Keywords: Hom-group; Hom-normal subgroup; Hom-quotient group; Homgroup homomorphism. 2020 MSC: Primary 17A99, 20A05, 20D20.

1. Introduction

The concept of Hom-Lie algebras was introduced by Hartwig et al. in [6] in their study of deformations of the Witt and Virasoro algebras. Since the introduction of Hom-Lie algebras, many researchers have worked on expanding and extending the concept to include other Hom-like structures such as Hom-Lie groups, Hom-Hopf algebras, Hom-coalgebras and Hom-bialgebras. For full details, the readers should see ([2], [3], [5], [6], [11-13], [15-19], [21-24]). Hassanzadeh [8], Laurent-Gengouxa and Makhlouf [13] have shown in their works that the twisting map in the Hom-group (G, α) needs not to be invertible as it was taken in the previous works. Using the invertibility of α , Hassanzadeh [7] studied and obtained many interesting properties of the Hom-group including Hom-group representations and Hom-group cohomology. Following the notions introduced and used to study Hom-groups by Hassanzadeh in [7, 8], Liang et al. [14] extensively studied Hom-groups. Many basic and fundamental properties of Hom-groups were presented with interesting examples. They proved first, second and third isomorphism theorems of Hom-groups. They introduced the concept of Hom-group action and proved the first Sylow theorem for Homgroups. In [1], Agboola et al. for the first time introduced the concept of neutrosophic Hom-group. Many examples of both the Hom-groups and neutrosophic Hom-groups were presented. They presented basic and fundamental properties of neutrosophic Hom-groups. In addition, they studied neutrosophic morphisms of neutrosophic Hom-groups along with their properties and they

(c) the Author(s)

Publisher: Shahid Bahonar University of Kerman

How to cite: A.A.A. Agboola, M.A. Ibrahim, A.O. Adeniji, and S.A. Adebisi, On fundamental properties of hom-groups, J. Mahani Math. Res. 2025; 14(2): 81-97.

[⊠] agboolaaaa@funaab.edu.ng, ORCID: 0000-0002-1948-4178 https://doi.org/10.22103/jmmr.2024.24063.1697

established a kind of morphism relationship that exists between a neutrosophic Hom-group G(I) and a Hom-group $G \times G$. In the present paper, we follow the concepts introduced by Hassanzadeh [7, 8] and Liang et al. [14] to further study and obtain more properties of Hom-groups. Specifically, we present more properties of Hom-groups, Hom-subgroups, Hom-normal subgroups, Hom-quotient groups and Hom-group homomorphisms with examples. As a major result of this paper, we prove the Zassenhaus Butterfly Lemma of Hom-groups.

1.1. **Recalls.** In this subsection, we will recall the definition, basic notations and properties of Hom-groups as presented by Basdouri et al. in [3], Hassan-zadeh in [7, 8], Liang et al. in [14] and Jiang et al. in [10] which we are going to use in the sequel.

Definition 1.1. [10] Let G be a nonempty set, $*: G \times G \to G$ a binary operation on $G, \alpha: G \to G$ a bijective set map and $1 \in G$ a distinguished element. The quadruple $(G, *, \alpha, 1)$ is called a Hom-group if the following conditions hold:

(i) The product map α satisfies the Hom-associativity property

$$\alpha(g) * (h * k) = (g * h) * \alpha(k) \ \forall g, h, k \in G.$$

(ii) The product map α is multiplicative that is

$$\alpha(g \ast k) = \alpha(g) \ast \alpha(h) \ \forall g, h \in G.$$

(iii) The element $1 \in G$ called the unit element satisfies the Hom-unitary conditions

$$g * 1 = 1 * g = \alpha(g) \ \forall g \in G.$$

(iv) For every element $g \in G$, there exists an element $g^{-1} \in G$ such that

$$q * g^{-1} = g^{-1} * g = 1.$$

If there is no confusion, we may omit the multiplication sign *. In that case g * h will be written simply as gh.

(v) For any $g \in G$, there exists $k \in \mathbb{N}$ satisfying the Hom-invertibility condition

$$\alpha^k(gg^{-1}) = \alpha^k(g^{-1}g) = 1.$$

If only conditions (i) and (ii) are satisfied, G is called a Hom-semigroup. A Hom-semigroup with condition (iii) is called a Hom-monoid and a Hom-monoid with condition (iv) is called a Hom-group.

In (v), the smallest such k is called the invertibility index of g. If the invertibility index of $g \in G$ is k, then the invertibility index of $\alpha(g)$ is k-1.

Example 1.2. [1] Let \mathbb{C} be the set of complex numbers and let $* : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ be the binary operation on \mathbb{C} defined by $z_1 * z_2 = \overline{z_1 + z_2} \quad \forall z_1, z_2 \in \mathbb{C}$. Let $\alpha : \mathbb{C} \to \mathbb{C}$ be a mapping defined by $\alpha(z) = \overline{z} \quad \forall z \in \mathbb{C}$. Then $(\mathbb{C}, *, \alpha, 0)$ is an abelian Hom-group. **Proposition 1.3.** [14] Let G be a Hom-group.

- (a) The unit element of G is unique.
- (b) For any element $g, h \in G$:
- (i) $\alpha(1) = 1;$
- (ii) g^{-1} is unique;
- (iii) $(g^{-1})^{-1} = g;$ (iv) $(gh)^{-1} = h^{-1}g^{-1};$
- (v) $(\alpha(g))^{-1} = \alpha(g^{-1}).$

Proof. See [14].

Proposition 1.4. [14] Let G be a Hom-group.

- (a) If there is an element $g \in G$ such that $gg = \alpha(g) = g1$, then g = 1.
- (b) If the elements $g, h, k \in G$ satisfy gh = gk or hg = kg, then h = k.
- (c) For any $g, h, k \in G$:
- (i) $\alpha^{-1}(gh) = \alpha^{-1}(g)\alpha^{-1}(h);$
- (ii) $(\alpha^{-1}(g)h)k = g(h\alpha^{-1}(k)).$

Proof. See [14].

Proposition 1.5. [7] Let (G, μ) be a group and let $\alpha : G \to G$ be a group automorphism. Then $(G, \alpha \circ \mu, \alpha)$ is a Hom-group.

Proof. See [1]

Definition 1.6. [7] Let H be a nonempty subset of a Hom-group (G, α) that is closed under the binary operation in G. H is said to be a Hom-subgroup of G if (H, α) is itself a Hom-group under the binary operation inherited from G and we write $H \leq G$.

Proposition 1.7. [14] Let H and K be two Hom-subgroups of a Hom-group G.

- (a) (i) $1_H = 1_G$.
- (ii) for each $h \in H$, $h_H^{-1} = h_G^{-1}$.
- (b) (i) $H \cap K \leq G$.
- (ii) $H \cup K \leq G$ if and only if $H \subset K$ or $K \subset H$.

Proof. See [14]

Definition 1.8. [14] Let H be a Hom-subgroup of a Hom-group G and let $g \in G$. The sets gH an Hg are defined respectively by $\{gh : h \in H\}$ and $\{hq: h \in H\}$. qH is called a Hom-left cos of H in G while Hq is called a Hom-right coset of H in G. The set of all distinct Hom-left cosets of H in G is denoted by G/H.

Generally, $gH \neq Hg$ except if G is abelian. However, if $gH = Hg \ \forall g \in G$, then H is called a Hom-normal subgroup of G and we write $H \triangleleft G$.

Proposition 1.9. [14] Let H be a Hom-subgroup of a finite Hom-group G. For all $g, h \in G$, the following statements are equivalent:

83

84 A.A.A. Agboola, M.A. Ibrahim, A.O. Adeniji, and S.A. Adebisi

(i) gH = hH;(ii) $gH \cap hH \neq \emptyset;$ (iii) $g^{-1}h \in H;$ (iv) $\alpha(h) \in gH;$ (v) $\alpha(g)H = \alpha(h)H.$

Proof. See [14].

Proposition 1.10. [14] Let H be a Hom-subgroup of a Hom-group G. For all $g \in G$, the following statements are equivalent:

- $\begin{array}{ll} (\mathrm{i}) & gH=Hg; \\ (\mathrm{ii}) & for \ h\in H, \ (gh)\alpha(g^{-1})\in H; \\ (\mathrm{iii}) & (gH)\alpha(g^{-1})\subseteq H; \end{array}$
- (iv) $(gH)\alpha(g^{-1}) = H;$
- (v) $\alpha(g)H = H\alpha(g).$

Proof. See [14].

Lemma 1.11. [14] Let $(G, *, \alpha)$ be a Hom-group. Let $H \leq G$ and $N \triangleleft G$. Then, $NH = HN \leq G$.

Proof. See [14].

Proposition 1.12. [14] If H is a Hom-normal subgroup of a Hom-group $(G, *, \alpha)$, then $(G/H, \odot, \beta)$ is a Hom-group, where \odot is defined for any $aH, bH \in G/H$ by $aH \odot bH = a * bH$ and β is defined for any $aH \in G/H$ by $\beta(aH) = \alpha(a)H$.

Proof. See [14].

Definition 1.13. [14] Let (G, α) and (H, β) be two Hom-groups. The map $\phi : G \to H$ is called a Hom-group homomorphism if ϕ satisfies the following two conditions:

(i) for any $g, h \in G$, $\phi(gh) = \phi(g)\phi(h)$;

(ii) for all $g \in G$, $\beta(\phi(g)) = \phi(\alpha(g))$.

In addition, if ϕ is a bijection, then we call ϕ an isomorphism and we write $G\cong H.$

Definition 1.14. [14] The map $\phi : (G, \alpha) \to (H, \beta)$ is called a weak Homgroup homomorphism if $\phi(1_G) = 1_H$ and $\beta \circ \alpha(gk) = (\phi \circ \alpha(g))(\phi \circ \alpha(k))$ $\forall g, k \in G.$

Proposition 1.15. [14] Let $\phi : (G, \alpha) \to (H, \beta)$ be a Hom-group homomorphism. Then,

- (i) $\phi(1_G) = 1_H;$
- ii) for all $g \in G$, $\phi(g^{-1}) = (\phi(g))^{-1}$;
- (iii) $Ker\phi \lhd G;$
- (iv) $Im\phi \leq H$.

Proof. See [14].

Proposition 1.16. Let $\phi : (G, \alpha) \to (H, \beta)$ be a Hom-group homomorphism.

- (a) If $A \leq G$ and $B \leq H$, then,
- (i) $\phi(A) \leq H$;
- (ii) $\phi^{-1}(B) \le G$.
- (b) (i) ϕ is a monomorphism if and only if $Ker\phi = \{1_G\}$;
- (ii) ϕ is an epimorphism if and only if $Im\phi = H$;
- (iii) ϕ is an isomorphism if and only if $Ker\phi = \{1_G\}$ and $Im\phi = H$.

Proof. See [14].

Proposition 1.17. [14] (First Isomorphism Theorem) Let $\phi : (G, \alpha) \to (H, \beta)$ be a Hom-group homomorphism. Then, $G/\text{Ker}\phi \cong \text{Im}\phi$. If ϕ is a Hom-group epimorphism, then, $G/\text{Ker}\phi \cong H$.

Proof. See [14].

Lemma 1.18. [14] If G is a Hom-group such that $H \leq G$ and $N \triangleleft G$, then, $HN = NH \leq G$.

Proof. See [14].

Proposition 1.19. [14] (Second Isomorphism Theorem) Let G be a Homgroup such that $H \leq G$ and $N \triangleleft G$. Then,

- (i) $H \cap N \triangleleft H$;
- (ii) $N \triangleleft NH$;
- (iii) $H/(H \cap N) \cong NH/N$.

Proof. See [14].

Proposition 1.20. [14] (Third Isomorphism Theorem) Let (G, α) be a Homgroup such that $M \triangleleft G$, $N \triangleleft G$ and $N \leq M$. Then,

(i) $(M/N,\mu) \lhd (G/N,\mu);$

(ii) $(G/N)/(M/N) \cong G/M$.

Proof. See [14].

Proposition 1.21. Let (G, α) be a Hom-group and let $H, K \leq G$. If H and K satisfy the following three conditions:

(i) G = HK; (ii) $H \cap K = \{1\}$; (iii) $\forall h \in H, k \in K, we have hk = kh$, then $G \cong H \times K$.

Proof. See [14].

86 A.A.A. Agboola, M.A. Ibrahim, A.O. Adeniji, and S.A. Adebisi

2. Main Results

In this section, we will study and give more fundamental properties of Homgroups and provide examples.

Proposition 2.1. Let $(G, *, \alpha)$ be a Hom-group. Then, the unital element $1 \in G$ is the only idempotent element in G.

Proof. By definition, $1 * 1 = \alpha(1) = 1$ which shows that $1 \in G$ is an idempotent element. Suppose that $1 \neq u \in G$ is also another idempotent element in G. Then, $u^2 = u$ which implies that u(u-1) = 0. Since u cannot be 0 or 1, it follows that such a u does not exist in G and therefore, 1 is the only idempotent element in G.

Lemma 2.2. Let (G, α) be a Hom-group. Then for any $g \in G$:

(i) $(\alpha^{-1}(g))^{-1} = \alpha^{-1}(g^{-1});$ (i) $(\alpha^{-1}(g^{-1}))^{-1} = \alpha^{-1}(g);$ (ii) $(\alpha(g)\alpha^{-1}(g^{-1}))^{-1} = \alpha^{-1}(g)\alpha(g^{-1}) = \alpha^{-1}(g)\alpha^2(g^{-1}) = g\alpha(g^{-1}).$

Proof. (i) It is sufficient to show that the inverse of $\alpha^{-1}(g)$ is $\alpha^{-1}(g^{-1})$. To this end,

$$\begin{aligned} \alpha^{-1}(g)\alpha^{-1}(g^{-1}) &= \alpha^{-1}(gg^{-1}) = 1 \text{ and also,} \\ \alpha^{-1}(g^{-1})\alpha^{-1}(g) &= \alpha^{-1}(g^{-1}g) = 1. \end{aligned}$$

The required result follows from the uniqueness of the inverse element in G. (ii) It suffices to show that the inverse of $\alpha^{-1}(g^{-1})$ is $\alpha^{-1}(g)$. To this end,

$$\begin{aligned} \alpha^{-1}(g^{-1})\alpha^{-1}(g) &= \alpha^{-1}(g^{-1}g) = 1 \text{ and also,} \\ \alpha^{-1}(g)\alpha^{-1}(g^{-1}) &= \alpha^{-1}(gg^{-1}) = 1. \end{aligned}$$

The required result follows from the uniqueness of the inverse element in G. (iii)

(1)

$$(\alpha(g)\alpha^{-1}(g^{-1}))^{-1} = (\alpha^{-1}(g^{-1}))^{-1}(\alpha(g))^{-1}$$

$$= \alpha^{-1}(g)\alpha(g^{-1}).$$

$$= \alpha(\alpha^{-1}(gg^{-1})[\alpha^{-1}(g)\alpha(g^{-1})]]$$

$$= (\alpha^{-1}(gg^{-1})\alpha^{-1}(g))\alpha^{2}(g^{-1})$$
(2)

$$= \alpha^{-1}(g)\alpha^{2}(g^{-1}).$$

(2)

From (1), we have

(
$$\alpha(g)\alpha^{-1}(g^{-1}))^{-1} = \alpha^{-1}(g)\alpha(g^{-1})$$

 $= (\alpha^{-1}(g)\alpha(g^{-1}))\alpha(\alpha^{-1}(gg^{-1}))$
 $= \alpha(\alpha^{-1}(g))(\alpha(g^{-1})\alpha^{-1}(gg^{-1}))$
(3) $= g\alpha(g^{-1}).$

The required results follow from (1), (2) and (3).

_

Proposition 2.3. Let (G, α) be a Hom-group and let $g, h \in G$. Then, G is an abelian Hom-group if and only if $(gh)^2 = g^2h^2$.

Proof. Suppose that $(gh)^2 = g^2h^2$. Then, (gh)(gh) = (gg)(hh) and so,

$$(gh)\alpha\alpha^{-1}(gh) = (gg)\alpha\alpha^{-1}(hh) \Rightarrow \alpha(g)(h\alpha^{-1}(gh)) = \alpha(g)(g\alpha^{-1}(hh)).$$

By premultiplying both sides by $\alpha^2(g^{-1})$, we have

$$\alpha^{2}(h\alpha^{-1}(gh) = \alpha^{2}(g\alpha^{-1}(hh))$$

$$\Rightarrow (\alpha(h)\alpha(g))\alpha^{2}(h) = (\alpha(g)\alpha(h))\alpha^{2}(h).$$

By postmultiplying both sides by $\alpha^3(h^{-1})$, we have

$$\begin{array}{rcl} \alpha^3(hg) &=& \alpha^3(gh))\\ hg &=& gh \end{array}$$

and therefore, G is abelian.

Conversely, suppose that G is abelian. Then,

$$\begin{aligned} (gh)^2 &= (gh)(gh) = (gh)\alpha\alpha^{-1}(gh) = \alpha(g)(h\alpha^{-1}(gh)) \\ &= \alpha(g)(\alpha\alpha^{-1}(h)(\alpha^{-1}(g)\alpha^{-1}(h)) = \alpha(g)((\alpha^{-1}(h)(\alpha^{-1}(g))h)) \\ &= \alpha(g)((\alpha^{-1}(hg)h) = \alpha(g)((\alpha^{-1}(gh)\alpha\alpha^{-1}(h))) \\ &= \alpha(g)(g(\alpha^{-1}(h)\alpha^{-1}(h))) = \alpha(g)(g\alpha^{-1}(h^2)) \\ &= g^2h^2. \end{aligned}$$

Corollary 2.4. Let (G, α) be a Hom-group such that $g^2 = 1 \quad \forall g \in G$. Then G is an abelian Hom-group. More generally, if G is a Boolean Hom-group, then G is an abelian Hom-group.

Proposition 2.5. Let (G, α) be a Hom-group and let $g, h \in G$. G is an abelian Hom-group if and only if $(gh)^{-1} = g^{-1}h^{-1}$.

Proof. Suppose that $(gh)^{-1} = g^{-1}h^{-1}$. Then, $h^{-1}g^{-1} = g^{-1}h^{-1}$ so that $\alpha^2(h^{-1})\alpha^2(g^{-1}) = \alpha^2(g^{-1})\alpha^2(h^{-1}).$

After some manipulations, we have

$$\begin{array}{llll} \alpha^6(hg) & = & \alpha^6(gh) \\ hg & = & gh \end{array}$$

and therefore, G is abelian.

Conversely, suppose that G is abelian. Then, $(gh)^{-1} = (hg)^{-1} = g^{-1}h^{-1}$.

Proposition 2.6. Let (G, α) be a Hom-group and let g, h, k be any elements of G. If $gk = \alpha(hk)$, then g = h.

Proof. Suppose that $gk = \alpha(hk)$. Then, $gk = 1(gk) = \alpha(gk) = \alpha(g)\alpha(k) = \alpha(hk) = \alpha(h)\alpha(k)$ which implies that $\alpha(g)\alpha(k) = \alpha(h)\alpha(k)$ so that $\alpha^2(g)1 = \alpha^2(h)1$ from which we obtain $\alpha^3(g) = \alpha^3(h)$ and therefore, g = h.

Example 2.7. Let (G, *) be a Klein 4-group where $G = \{1, a, b, c\}$ and let $\alpha : G \to G$ be a group automorphism defined by $\alpha(1) = 1, \alpha(a) = c, \alpha(b) = a, \alpha(c) = b$. Then, by Proposition 1.5, $(G, \alpha \circ *, \alpha)$ is a Hom-group shown in the Cayley table below.

$\alpha \circ *$	1	a	b	С]
1	1	c	a	b]
a	c	1	b	a	ŀ
b	a	b	1	С	Ĩ
c	b	a	c	1	

It is observed that $(G, \alpha \circ *, \alpha)$ has no nontrivial Hom-subgroup.

Example 2.8. Let (G, *) be the group of integers modulo 8 that is $G = \mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and let $\alpha : G \to G$ be a group automorphism defined by $\alpha(0) = 0, \alpha(1) = 7, \alpha(2) = 6, \alpha(3) = 5, \alpha(4) = 4, \alpha(5) = 3, \alpha(6) = 2, \alpha(7) = 1$. Then, by Proposition 1.5, $(G, \alpha \circ *, \alpha)$ is a Hom-group shown in the Cayley table below.

$\alpha \circ *$	0	1	2	3	4	5	6	7
0	0	7	6	5	4	3	2	1
1	7	6	5	4	3	2	1	0
2	6	5	4	3	2	1	0	7
3	5	4	3	2	1	0	7	6
4	4	3	2	1	0	7	6	5
5	3	2	1	0	7	6	5	4
6	2	1	0	7	6	5	4	3
7	1	0	7	6	5	4	3	2

It can easily be checked that $(G, \alpha \circ *, \alpha)$ is non-cyclic, and it has two nontrivial Hom-subgroups $H = \{0, 4\}$ and $K = \{0, 2, 4, 6\}$. Since $4 \times 0 = 0, 4 \times 1 = 4$ and $4 \times 2 = 4+4 = 0$, it follows that H is a cyclic Hom-subgroup of order 2 generated by 4, that is $H = \langle 4 \rangle$. For K, we have $2 \times 0 = 0, 2 \times 1 = 2, 2 \times 2 = 2+2 = 4;$ $4 \times 0 = 0, 4 \times 1 = 4, 4 \times 2 = 4+4 = 0;$ and $6 \times 0 = 0, 6 \times 1 = 6, 6 \times 2 = 6+6 = 4;$ it follows that K is not cyclic, that is $K \neq \langle 2 \rangle, \langle 4 \rangle, \langle 6 \rangle$. Lastly, since o(H) = 2, o(K) = 4, and the order of the Hom-group $(G, \alpha \circ *, \alpha)$ is 8, it follows that both H and K satisfy Lagrange's theorem.

Proposition 2.9. Let H be a subset of a Hom-group $(G, *, \alpha)$.

- (a) H is a Hom-subgroup of G if the following conditions hold:
- (i) $H \neq \emptyset$;
- (ii) for any $g, h \in H$, then, $gh \in H$;
- (iii) for all $h \in H$, then, $h^{-1} \in H$.
- (b) H is a Hom-subgroup of G if the following conditions hold:

On fundamental properties of hom-groups – JMMR Vol. 14, No. 2 (2025)

(i)
$$H \neq \emptyset$$
;

(ii) for any
$$g, h \in H$$
, then, $gh^{-1} \in H$.

Proof. Easy.

Proposition 2.10. Let $(G, *, \alpha)$ be an abelian Hom-group and let H be a subset of G defined by $H = \{g \in G : g = g^{-1}\}$. Then, H is a Hom-subgroup of G for all $g \in G$.

Proof. Suppose that G is abelian. It is clear that $H \neq \emptyset$ since $1 = 1^{-1} \in H$. Let $g, h \in H$ be arbitrary. Then $g = g^{-1}$ and $h = h^{-1}$ so that $gh^{-1} = g^{-1}h = g^{-1}(h^{-1})^{-1} = (gh^{-1})^{-1} \in H$. According to Proposition 2.9, H is a Hom-subgroup of G.

Example 2.11. Let (G, *) be a group where $G = \{\pm 1, \pm i\}$, $i^2 = -1$ and let $\alpha : G \to G$ be a group automorphism defined by $\alpha(1) = 1, \alpha(-1) = -i, \alpha(i) = i, \alpha(-i) = -1$. Then, by Proposition 1.5, $(G, \alpha \circ *, \alpha)$ is a Hom-group shown in the Cayley table below.

	$\alpha \circ \ast$	1	-1	i	-i	
1	1	1	-i	i	-1	
	-1	-i	i	-1	1].
	i	i	-1	1	-i	
	-i	-1	1	-i	i	

It is observed that $(G, \alpha \circ *, \alpha)$ has only one nontrivial Hom-subgroup $H = \{1, i\}$ which is cyclic generated by i, that is $H = \langle i \rangle$.

Proposition 2.12. Let A and B be Hom-normal subgroups of Hom-groups (G, α) and (H, β) , respectively. Then, $A \times B \triangleleft G \times H$.

Proof. Suppose that A ⊲ G and B ⊲ H. Then clearly, $A × B ≠ \emptyset$ since $(1_G, 1_H) ∈ A × B$, and we have, $(ga)α(g^{-1}) ∈ A$ and $(hb)β(h^{-1}) ∈ H$ for (g,h) ∈ G × H and (a,b) ∈ A × B. Now, let (a,b), (c,d) ∈ A × B be arbitrary. Then, $(a,b)(c,d)^{-1} = (a,b)(c^{-1},d^{-1}) = (ac^{-1},bd^{-1}) ∈ A × B$. This shows that A × B ≤ G × H. For Hom-normality, consider $((g,h)(a,b))(α(g^{-1}),β(h^{-1})) = ((ga)α(g^{-1}),(hb)β(h^{-1})) ∈ A × B$. Accordingly, A × B ⊲ G × H.

Definition 2.13. Let A be a subset of the Hom-group (G, α) . C(A), the centralizer of A in G, is defined by $C(A) = \{g \in G : ag = ga \ \forall a \in A\}.$

Proposition 2.14. (i) $C(A) \leq G$.

(ii) If A is an abelian Hom-subgroup of G, then $A \triangleleft C(A)$.

Proof. (i) $C(A) \neq \emptyset$ since $1 \in C(A)$. Next, suppose that $g, h \in C(A)$ are arbitrary. Then, ga = ag and ha = ah so that $h^{-1}a^{-1} = a^{-1}h^{-1}$. Now, $(gh^{-1})a = (gh^{-1})\alpha(\alpha^{-1}(a)) = \alpha(g)(h^{-1}\alpha^{-1}(a)) = \alpha(g)(\alpha^{-1}(a)h^{-1}) = (g\alpha^{-1}(a))\alpha(h^{-1}) = (\alpha^{-1}(a)g)\alpha(h^{-1}) = a(gh^{-1})$. Hence, $gh^{-1} \in C(A)$ and $C(A) \leq G$.

 \square

(ii) Suppose that A is an abelian Hom-subgroup of G. Then, $a \in A$ implies that $a \in C(A) \, \forall a \in A$. Suppose that $g \in C(A)$. Then, ga = ag and $(ga)\alpha(g^{-1}) = (ag)\alpha(g^{-1}) = \alpha(a)(gg^{-1}) = \alpha(a)1 = \alpha^2(a) \in A$. Accordingly, $A \triangleleft C(A)$.

Definition 2.15. Let A be a subset of the Hom-group (G, α) . N(A), the normalizer of A in G, is defined by $N(A) = \{g \in G : gA = Ag\}$.

Proposition 2.16. (i) $N(A) \leq G$.

(ii) If A is a Hom-subgroup of G, then $A \triangleleft G$ if and only if N(A) = G.

Proof. (i) $N(A) \neq \emptyset$ since $1 \in N(A)$. Next, suppose that $g, h \in N(A)$ are arbitrary. Then gA = Ag and hA = Ah so that $h^{-1}A = Ah^{-1}$. Now, for $a \in A$, $(gh^{-1})a = (gh^{-1})\alpha(\alpha^{-1}(a)) = \alpha(g)(h^{-1}\alpha^{-1}(a)) = \alpha(g)(\alpha^{-1}(a)h^{-1}) = (g\alpha^{-1}(a))\alpha(h^{-1}) = (\alpha^{-1}(a)g)\alpha(h^{-1}) = a(gh^{-1})$. Hence, $(gh^{-1})A = A(gh^{-1})$, $gh^{-1} \in N(A)$ and $N(A) \leq G$.

(ii) The proof is the same as the case of the classical group and so omitted. $\hfill\square$

Lemma 2.17. Let (G, α) be a Hom-group and let $H, K \triangleleft G$. Then, $HK \triangleleft G$.

Proof. Suppose that $H, K \triangleleft G$. Then, for any $g \in G$, there exist $h \in H$, $k \in K$ such that $(gh)\alpha(g^{-1}) \in H$ and $(gk)\alpha(g^{-1}) \in K$. Again, there exist $x \in H, y \in K$ such that $x = (gh)\alpha(g^{-1})$ and $y = (gk)\alpha(g^{-1})$. Now, $xy = ((gh)\alpha(g^{-1}))((gk)\alpha(g^{-1})) = (\alpha(g)(hg^{-1}))(\alpha(g)(kg^{-1})) \in HK$, and, $(g(xy))\alpha(g^{-1}) = \alpha(g)((\alpha(g)(hg^{-1}))(\alpha(g)(kg^{-1}))g^{-1}) \in HK$. Hence, $HK \triangleleft$ G.

- **Example 2.18.** (i) Let $(G, \alpha \circ *, \alpha)$ be the Hom-group of Example 2.11 and let $H = \{1, i\}$ be its Hom-subgroup. It can easily be checked that $H \triangleleft G$. Distinct Hom-left cosets of H in G are H and -iH which form the partitions of G and $G/H = \{H, -iH\}$.
 - (ii) Let (G, α ∘ *, α) be the Hom-group of Example 2.8 and let H = {0,4} and K = {0,2,4,6} be its Hom-subgroups. Distinct Hom-left cosets of H in G are H, 1 + H, 2 + H and 3 + H which are the partitions of G and G/H = {H, 1 + H, 2 + H, 3 + H}. Also, distinct Hom-left cosets of K in G are K and 1 + K which also form the partitions of G and therefore, G/K = {K, 1 + K}.
 - (iii) Let G/H be as defined in Example 2.18 (i) and consider the Cayley table below.

ſ	\odot	H	-iH
ſ	H	Н	-iH
	-iH	-iH	H

It can easily be checked that $(G/H, \odot, \beta)$ is a Hom-group.

(iv) Let G/H and G/K be as defined in Example 2.18 (ii) and consider the Cayley tables below.

					-
\oplus	Н	1 + H	2+H	3+H	Π
H	H	3 + H	2+H	1 + H	
1+H	3 + H	2 + H	1+H	Н	Ī
2+H	2 + H	1 + H	H	3+H	Ī
3+H	1 + H	Н	3+H	2+H	Ī

\oplus	K	1+K]
K	K	1+K].
1+K	1+K	K]

It can easily be checked that $(G/H, \oplus, \beta)$ and $(G/K, \oplus, \beta)$ are Homgroups.

Proposition 2.19. Let A and B be Hom-normal subgroups of the Hom-groups $(G, *, \alpha)$ and (H, \star, β) , respectively. Let $(G/A, \odot, \lambda)$ and $(H/B, \otimes, \mu)$ be Homquotient groups respectively factored by A and B. Let $(G/A) \times (H/B) = \{(gA, hB) : g \in G, h \in H\}$. Then, $(G/A) \times (H/B), \Box, \gamma)$ is a Hom-group.

Proof. To prove Hom-associativity, let $(gA, hB), (pA, qB), (xA, yB) \in (G/A) \times (H/B)$ be arbitrary. Then,

$$\begin{split} \gamma((gA, hB)) &\boxdot ((pA, qB) \boxdot (xA, yB)) &= (\alpha(g)A, \beta(h)B) \boxdot (pxA, qyB) \\ &= (\alpha(g)(px)A, \beta(h)(qy)B) \\ &= ((gp)\alpha(x)A, (hq)\beta(y)B) \\ &= ((gA, hB) \boxdot (pA, qB)) \boxdot (\alpha(x)A, \beta(y)B) \\ &= ((gA, hB) \boxdot (pA, qB)) \boxdot (\alpha(x)A, \beta(y)B) \\ \end{split}$$

To establish Hom-multiplication, let $(gA,hB),(pA,qB)\in (G/A)\times (H/B)$ be arbitrary. Then,

$$\begin{split} \gamma(((gA, hB) \boxdot (pA, qB)) &= \gamma((gpA, hqB)) = (\alpha(gp)A, \beta(hq)B) \\ &= (\alpha(g)A, \beta(h)B) \boxdot (\alpha(p)A, \beta(q)B) \\ &= \gamma((gA, hB))\gamma((pA, qB)). \end{split}$$

For Hom-neutrality, let $(gA, hB) \in (G/A) \times (H/B)$ be arbitrary. Then,

$$(1,1) \boxdot (gA,hB) = (1gA,1hB) = (g1A,h1B) = (\alpha(g)A,\beta(h)B)$$
$$= \gamma((gA,hB)).$$

Lastly for Hom-invertibility, we have for all $(gA, hB) \in (G/A) \times (H/B)$,

$$\begin{array}{ll} (gA,hB)\boxdot (g^{-1}A,h^{-1}B) &=& (gg^{-1}A,hh^{-1}B) = (1A,1B) = (A,B), \\ (g^{-1}A,h^{-1}B)\boxdot (gA,hB) &=& (g^{-1}gA,h^{-1}hB) = (1A,1B) = (A,B). \end{array}$$

These show that for all $(gA, hB) \in (G/A) \times (H/B)$, $(g^{-1}A, h^{-1}B)$ is its inverse. Accordingly, $(G/A \times H/B, \Box, \gamma)$ is a Hom-group. \Box **Lemma 2.20.** Let $\phi : (G, \alpha) \to (H, \beta)$ be a Hom-group homomorphism and let $A \triangleleft G$ and $B \triangleleft H$. Then,

(i) $\phi(A) \lhd H$; (ii) $\phi^{-1}(B) \lhd G$.

Proof. Suppose that $\phi : (G, \alpha) \to (H, \beta)$ is a Hom-group homomorphism. (i) Given that $A \triangleleft G$, it follows from Proposition 1.16 (a) (i) that $A \leq G$. For Hom-normality, let $\phi(a) \in \phi(A)$ and $h \in H$. Then, there exists $g \in G$ such that $h = \phi(g)$. Since $A \triangleleft G$, then,

$$(ga)\alpha(g^{-1}) \in A$$

$$\Rightarrow (\phi(g)\phi(a))\phi(\alpha(g^{-1})) \in \phi(A).$$

Now,

$$\begin{aligned} (h\phi(a))\beta(h^{-1}) &= (\phi(g)\phi(a))\beta((\phi(g))^{-1}) = (\phi(g)\phi(a))\beta(\phi(g^{-1})) \\ &= (\phi(g)\phi(a))\phi(\alpha(g^{-1})) \in \phi(A). \end{aligned}$$

Hence, $\phi(A) \lhd H$.

(ii) Given that $B \triangleleft H$, it follows from Proposition 1.16 (a) (ii) that $B \leq H$. For Hom-normality, let $b \in B$ and $h \in H$. Then,

$$(hb)\beta(h^{-1}) \in B \Rightarrow (\phi^{-1}(h)\phi^{-1}(b))\phi^{-1}(\beta(h^{-1})) \in \phi^{-1}(B).$$

Now, for some $x = \phi^{-1}(h)$ and $y = \phi^{-1}(b) \in G$, we have

$$(xy)\phi^{-1}(\beta(\phi(x^{-1})) \in \phi^{-1}(B) \Rightarrow (xy)\alpha(x^{-1}) \in \phi^{-1}(B).$$

Hence, $\phi^{-1}(B) \lhd G$.

Proposition 2.21. Let $\phi : (G, \alpha) \to (H, \beta)$ be a Hom-group isomorphism and let N be a Hom-normal subgroup of G. Then, ϕ induces a Hom-group isomorphism between G/N and $H/\phi(N)$.

Proof. Suppose that $\phi : (G, \alpha) \to (H, \beta)$ is a Hom-group isomorphism and $N \lhd G$. Then by Lemma 2.20 (i), $\phi(N) \lhd H$. Let $\psi : (G/N, \mu) \to (H/\phi(N), \nu)$ be a mapping defined by $\psi(xN) = \phi(x)\phi(N)$ for every $x \in G$. ψ is clearly well-defined since $N \lhd G$ and $\phi(N) \lhd H$. For Hom-homomorphism, let $xN, yN \in G/N$ be arbitrary. Then,

$$\psi(xNyN) = \psi(xyN) = \phi(xy)\phi(N) = \phi(x)\phi(y)\phi(N)$$
$$= (\phi(x)\phi(N))(\phi(y)\phi(N)) = \psi(xN)\psi(yN).$$

Also,

$$\begin{split} \nu(\psi(xN)) &= \nu(\phi(x)\phi(N)) = \beta(\phi(x))\phi(N) = \phi(\alpha(x))\phi(N) = \mu(xN)\phi(N) \\ &= \psi(\mu(xN)). \end{split}$$

Accordingly, ψ is a Hom-group homomorphism. ψ is obviously onto. For 1-1,

$$\begin{aligned} & \operatorname{Ker} \psi &= \{ xN \in G/N : \psi(xN) = \mathbf{1}_{H/\phi(N)} \} = \{ xN \in G/N : \psi(xN) = \phi(N) \} \\ &= \{ xN \in G/N : \phi(x) \in \phi(N) \} = \{ xN \in G/N : x \in N \} \\ &= \{ N \}. \end{aligned}$$

Now, ψ is 1-1 and therefore, $G/N \cong H/\phi(N)$.

Proposition 2.22. Let (G, α) and (H, β) be two Hom-groups. Then, $G \times H \cong H \times G$.

Proof. Let $\phi : (G \times H, \mu) \to (H \times G, \nu)$ be a mapping defined by $\phi((g, h)) = (h, g)$ for any $(g, h) \in G \times H$. For Hom-homomorphism, let $(g, h), (u, v) \in G \times H$ be arbitrary. Then,

$$\begin{array}{lll} \phi((g,h)(u,v)) &=& \phi((gu,hv)) = (hv,gu) = (h,g)(v,u) \\ &=& \phi((g,h))\phi((u,v)). \end{array}$$

Also,

$$\begin{array}{ll} \nu(\phi((g,h))) & = & \nu((h,g) = (h,g) = \phi((g,h)) \\ & = & \phi(\mu((g,h))). \end{array}$$

The mapping ϕ is obviously onto. For 1-1,

$$\begin{split} \operatorname{Ker} \phi &= \{(g,h) \in G \times H : \phi((g,h)) = 1_{H \times G} \} \\ &= \{(g,h) \in G \times H : \phi((g,h)) = (1_H, 1_G) \} \\ &= \{(g,h) \in G \times H : (h,g)) = (1_H, 1_G) \} \\ &= \{(1_G, 1_H) \}. \end{split}$$

Therefore, ϕ is 1-1 and, $G \times H \cong H \times G$.

Proposition 2.23. Let (G, α) and (H, β) be two Hom-groups and let $A \triangleleft G$ and $B \triangleleft H$. Then, $(G \times H)/(A \times B) \cong (G/A) \times (H/B)$.

Proof. By Proposition 2.12, $A \times B \lhd G \times H$ and therefore, $(G \times H)/(A \times B)$ is a Hom-quotient group. Let $\phi : (G \times H, \mu) \to ((G/A) \times (H/B), \nu)$ be a mapping defined by $\phi((g, h)) = (gA, hB) \ \forall (g, h) \in G \times H$. Clearly, ϕ is well-defined. For Hom-homomorphism, let $(g, h), (x, y) \in G \times H$ be arbitrary. Hence,

$$\begin{array}{lll} \phi((g,h)(x,y)) &=& \phi((gx,hy)) = (gxA,hyB) = (gA,hB)(xA,yB) \\ &=& \phi((g,h))\phi((x,y)). \end{array}$$

Also,

$$\nu(\phi((g,h))) = \nu((gA,hB)) = ((\alpha(g)A,\beta(h)B)) = \phi((\alpha(g),\beta(h)))$$
$$= \phi((\mu(g,h)).$$

Accordingly, ϕ is a Hom-group homomorphism. Clearly, ϕ is onto and therefore, ϕ is an epimorphism. Now,

$$\begin{aligned} \operatorname{Ker} \phi &= \{(g,h) \in G \times H : \phi((g,h)) = \mathbf{1}_{G/A) \times (H/B)} \} \\ &= \{(g,h) \in G \times H : (gA,hB) = (A,B) \} \\ &= \{(g,h) \in G \times H : g \in A \text{ and } h \in B\} = A \times B \end{aligned}$$

By invoking the First Isomorphism Theorem, we have $(G \times H)/(A \times B) \cong (G/A) \times (H/B)$.

Proposition 2.24. [20](Zassenhaus Butterfly Lemma) Let (G, α) be a Homgroup and let $H, K \leq G$. If $A \triangleleft H$ and $B \triangleleft K$, then,

- (i) $A \cap K \triangleleft H \cap K;$ (ii) $H \cap B \triangleleft H \cap K;$
- $(II) II + D \triangleleft II + K;$
- (iii) $(A \cap K)B \triangleleft (H \cap K)B;$
- (iv) $A(H \cap B) \triangleleft A(H \cap K);$
- $(\mathbf{v}) \ A(H \cap K) / A(H \cap B) \cong (H \cap K) / (A \cap K)(H \cap B) \cong (H \cap K) B / (A \cap K) B.$

Proof. Suppose that $H, K \leq G$ and suppose that $A \triangleleft H, B \triangleleft K$.

(i) From Proposition 1.7 (b) (i), we have $H \cap K \leq G$ which is indeed a Homgroup. Since $A \cap K \subseteq H \cap K$, it is clear that $A \cap K \leq H \cap K$. For Hom-normality, let $x \in A \cap K$ and $y \in H \cap K$. Then, $x \in A$, $x \in K$, $y \in H$ and $y \in K$ from which we obtain $x \in A$, $y \in H$, $x \in B$ and $y \in K$. Since $A \triangleleft H$ and $B \triangleleft K$, it follows that $(yx)\alpha(y^{-1}) \in A$ and $(yx)\alpha(y^{-1}) \in K$ from which we obtain $(yx)\alpha(y^{-1}) \in A \cap K$ and therefore, $A \cap K \triangleleft H \cap K$.

(ii) Follows the same arguments as in (i).

(iii) Since $B \triangleleft K$, it follows from Lemma 1.11 that $(H \cap K)B$ is a Hom-group. To show that $(A \cap K)B$ is also a Hom-group, it suffices to show that $A \cap K$ is a Hom-subgroup of the normalizer of A which is H. To see this,

$$N(A) = \{x \in H \cap K : xA = Ax\} = \{x \in H \cap K : A = xAx^{-1}\}$$
$$= \{x \in H \cap K : x \in A \text{ since } A \lhd H\} = H.$$

From the same Lemma 1.11, $(A \cap K)B$ is a Hom-group which is contained in $(H \cap K)B$ as a Hom-subgroup. For Hom-normality, this follows from Lemma 2.17 since from (i), $A \cap K \lhd H \cap K$ and we know that $B \lhd K$.

(iv) Follows the same arguments as in (iii).

(v) Let $\phi: A(H\cap K) \to (H\cap K)/(A\cap K)(H\cap B)$ be a mapping defined by

$$\phi(ah) = h(A \cap K)(H \cap B)$$
, for all $a \in A, h \in H \cap K$.

We first show that ϕ is well-defined. Suppose that a = b and h = k that is ah = bk where $a, b \in A$ and $h, k \in H \cap K$. We need to show that $\phi(ah) = \phi(bk)$.

To this end,

$$\begin{split} (a^{-1}b)^{-1}(hk^{-1}) &= (b^{-1}a)(hk^{-1}) = \alpha \alpha^{-1}((b^{-1}a))(hk^{-1}) \\ &= (\alpha^{-1}((b^{-1}a))h)\alpha(k^{-1}) = [(\alpha^{-1}(b^{-1})\alpha^{-1}(a))\alpha\alpha^{-1}(h)]\alpha(k^{-1}) \\ &= ((b^{-1}(\alpha^{-1}(a)\alpha^{-1}(h)))\alpha(k^{-1}) = ((b^{-1}(\alpha^{-1}(ah)))\alpha(k^{-1}) \\ &= ((b^{-1}(\alpha^{-1}(bk)))\alpha(k^{-1}) = ((b^{-1}(\alpha^{-1}(b)\alpha^{-1}(k)))\alpha(k^{-1}) \\ &\in A \cap K = A \cap (H \cap K) \subseteq (A \cap K)(H \cap B). \end{split}$$

Hence, $\phi(ah) = \phi(bk)$, and ϕ is well-defined.

For Hom-homomorphism, we first note that $(G, *, \alpha)$, $(H \cap K, *, \alpha)$, $(A(H \cap K), *, \alpha)$ and $((H \cap K)/(A \cap K)(H \cap B), \circledast, \beta)$ are Hom-groups. Let $a, b \in A$ and $h, k \in H \cap K$. We need to show that $\phi((ah)(bk)) = \phi(ah)\phi(bk)$ and $\beta(\phi(ah)) = \phi(\alpha(ah))$. Since $A \triangleleft H$, $(hb)\alpha(h^{-1}) \in A$ and we can take $(hb)\alpha(h^{-1}) = c = \alpha(h)(bh^{-1})$ for some $c \in A$ from which we obtain $b = (h^{-1}c)\alpha(h)$. Now,

$$\begin{aligned} (ah)(bk) &= (ah)\alpha\alpha^{-1}(bk) = \alpha(a)(h\alpha^{-1}(bk)) \\ &= \alpha(a)(h(\alpha^{-1}(b)\alpha^{-1}(k))) = \alpha(a)(\alpha\alpha^{-1}(h)(\alpha^{-1}(b)\alpha^{-1}(k))) \\ &= \alpha(a)((\alpha^{-1}(h)\alpha^{-1}(b))k) = \alpha(a)((\alpha^{-1}(h)\alpha^{-1}((h^{-1}c)\alpha(h)))k) \\ &= \alpha(a)((\alpha^{-1}(hh^{-1})\alpha^{-1}(c))(hk)) = \alpha(a)(1\alpha^{-1}(c))(hk)) \\ &= (\alpha(a)c)(hk). \end{aligned}$$

Therefore,

$$\phi((ah)(bk)) = \phi((\alpha(a)c)(hk)) = hk(A \cap K)(H \cap B)$$

= $(h(A \cap K)(H \cap B))(k(A \cap K)(H \cap B)) = \phi(ah)\phi(bk).$

Next,

$$\beta(\phi(ah)) = \beta(h(A \cap K)(H \cap B)) = \alpha(h)(A \cap K)(H \cap B))$$
$$= \phi(\alpha(a)\alpha(h)) = \phi(\alpha(ah)).$$

We have just shown that ϕ is a Hom-group homomorphism. We next show that ϕ is a Hom-group epimorphism. To this end, for all $h \in H$, $\phi(1h) = h(A \cap K)(H \cap B)$. This shows that every element of $(H \cap K)/(A \cap K)(H \cap B)$ under ϕ has a preimage in $H \cap K$. Hence, ϕ is a Hom-group epimorphism. Lastly,

$$\text{Ker}\phi = \{ah \in A(H \cap K) : \phi(ah) = 1_{(H \cap K)/(A \cap K)(H \cap B)} = (A \cap K)(H \cap B) \}$$

= $\{ah \in A(H \cap K) : h(A \cap K)(H \cap B) = (A \cap K)(H \cap B) \}$
= $A(H \cap B).$

By invoking the First Isomorphism Theorem, $A(H \cap K)/A(H \cap B) \cong (H \cap K)/(A \cap K)(H \cap B)$. Using the same argument, it can be shown that $A(H \cap K)/A(H \cap B) \cong (H \cap K)B/(A \cap K)B$. Hence, $A(H \cap K)/A(H \cap B) \cong (H \cap K)B/(A \cap K)B$.

3. Conclusion

In this paper, we have studied and obtained more properties of Hom-groups. Specifically, we presented more properties of Hom-groups, Hom-subgroups, Hom-normal subgroups, Hom-quotient groups and Hom-group homomorphisms with examples. As a major result of this paper, we have proved the Zassenhaus Butterfly Lemma of Hom-groups.

4. Acknowledgment

The authors acknowledge and appreciate all the anonymous reviewers for their comments and suggestions which immensely contributed to the quality of the paper.

5. Funding

This research work has no funding.

6. Conflict of interest

The authors declare no conflict of interest.

References

- Agboola, A.A.A., Adeniji A.O., Ibrahim, M.A., & Adebisi, S.A., Introduction to Neutrosophic Hom-group, Submitted to Neutrosophic Sets and Systems (NSS).
- [2] Aizawa, N., & Sato, H., (1991), q-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 243, 237-244.
- [3] Basdouri, I., Chouaibi, S., Makhlouf, A., & Peyghan, E., Free Hom-groups, Hom-rings and Semisimple modules, https://arxiv.org/pdf/2101.03333.pdf.
- [4] Curtright, T.L., & Zachos, C.K., (1990), Deforming maps for quantum algebras, Phys. Lett. B, 256, 185-190.
- [5] Fregier, Y., & Gohr, A., On-Hom-type algebras, (2010), Journal of Generalized Lie Theory and Applications, 4, Article ID G101001, doi:10.4303/jglta/G101001.
- [6] Hartwig, J.T., Larson, D., & Silvestrov, S.D., (2006), Deformations of Lie Algebras using σ -derivations, J. Algebra, 295, 314-361.
- [7] Hassanzadeh, M., (2019), Lagrange's theorem for Hom-groups, Rocky J.Math., 49, 773-787.
- [8] Hassanzadeh, M., (2019), Hom-groups, representations and homological algebra, Colloq. Math., 158, 21-38.
- [9] Hassanzadeh, M., Shapiro, I., & Sutlu, S., (2015), Cyclic homology for Hom-algebras, Journal of Geometry and Physics, 98, 40-56.
- [10] Jiang, J., Mishra, S.K., & Sheng, Y., (2020), Hom-Lie algebras and Hom-Lie groups, integration and differentiation. SIGMA Symmetry Integrability Geom. methods Appl., 16 (137), 22.
- [11] Larsson, D., & Silvestrov, S.D., (2005), Quasi-Lie algebras, Contemp. Math. 391, 241-248.
- [12] Larsson, D., & Silvestrov, S.D., (2005), Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 288, 321-344.
- [13] Laurent-Gengouxa, C., Makhlouf, A., & Teles, J. (2018), Universal algebra of a Hom-Lie algebra and group-like elements, Journal of Pure and Applied Algebra, 222 (5), 1139-1163.

- [14] Liang, U.C., Tian, Q.F., Yao, M., Ripan, S., & H, Y.Z., (2023), On Homgroups and Hom-group Actions, Acta Mathematica, English Series, 39, 1887-1906. https://doi.org/10.1007/s10114-023-2133-7, http://www.ActaMath.com.
- [15] Makhlouf, A., & Silvestrov, S.D., (2009), Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, Springer-Verlag, Berlin.
- [16] Makhlouf, A., & Silvestrov, S.D., (2008), Hom-algebra structures, J. Gen. Lie Theory Appl., 2, 51-64
- [17] Makhlouf, A., & Panaite, F., (2015), Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra, J. Algebra, 441, 314-343.
- [18] Makhlouf, A., & Panaite, F., (2014), Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys., 55, 013501, 17.
- [19] Makhlouf, A., & Silvestrov, S.D., (2009), Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, In, Generalized Lie Theory in Mathematics, Physics and beyond, Springer, Berlin, 189-206.
- [20] Serge, L., (2002), Algebra, Graduate Texts in Mathematics 211, Springer-Verlag New York, Inc.
- [21] Yau, D., (2008), Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl., 2, 95-108.
- [22] Yau, D., (2010), Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra, 8, 45-64.
- [23] Yau, D., (2012), Hom-quantum groups, I. Quasi-triangular Hom-bialgebras, J. Phys., 45, 065203, 23.
- [24] Zhao, X., & Zhang, X., (2016), Lazy 2-cocycles over monoidal Hom-Hopf algebras, Colloq. Math., 142(1), 61-81.

Adesina Abdul Akeem Agboola Orcid number: 0000-0002-1948-4178 Department of Mathematics Federal University of Agriculture Abeokuta, Nigeria *Email address*: agboolaaaa@funaab.edu.ng Muritala Abiodun Ibrahim

Orcid Number: 0000-0002-2822-0342 Department of Mathematics Auburn University Auburn, AL 36849, USA Email address: mai0015@auburn.edu

Aderemi Olanrewaju Adeniji Orcid number: 0009-0007-6414-5152 Department of Mathematical Sciences Federal University of Oye Oye-Ekiti, Nigeria *Email address*: adenijiremi12345@gmail.com

SUNDAY ADESINA ADEBISI ORCID NUMBER: 0000-0003-3766-0910 DEPARTMENT OF MATHEMATICS UNIVERSITY OF LAGOS AKOKA, YABA, LAGOS, NIGERIA *Email address*: adesinasunday71@gmail.com