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Abstract. Discrete duality refers to a type of duality in which a class
of abstract relational systems serves as the dual counterpart to a class of

algebras. These relational systems are called frames, following the termi-

nology of non-classical logic. No topology is required in the construction
of these frames; hence, they can be considered to have a discrete topology.

In 1978, A. Monteiro introduced a class of algebras known as tetrava-

lent modal algebras, which represent a generalization of the three-valued
 Lukasiewicz algebras defined by Moisil. The theory of these tetravalent

modal algebras was initially developed by I. Loureiro, with significant
contributions from A. V. Figallo, and was later expanded by the work

of J. Font and M. Rius, and more recently by the work of M. Coniglio

and M. Figallo. In this paper, we present two discrete dualities for Mon-
teiro’s tetravalent modal algebras, each corresponding to a different class

of frames and a different complex algebra.
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1. Introduction and Preliminaries

A discrete duality represents a relationship between classes of algebras and
classes of relational systems (frames). If Alg is a class of algebras and Frm
is a class of frames, establishing a discrete duality between these two classes
involves the following steps:

• For each algebra L in Alg, associate a canonical frame X (C(L)) to the
algebra and show that it belongs to Frm.
• For each frame X in Frm, associate a complex algebra C(X (X)) and

show that it belongs to Alg.
• Prove two representation theorems:

* For each L ∈ Alg, there exists an embedding h : L ↪→ C(X (L)).
* For each X ∈ Frm, there exists an embedding k : X ↪→ X (C(X)).

Canonical frames correspond to the dual spaces of algebras in the Priestley-
style duality [24]; however, they are not equipped with a topology and can thus
be considered as having a discrete topology. In the context of duality theory
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in algebra and logic, a complex algebra is an algebraic structure constructed
from a given relational frame [16].

A discrete duality leads to what is referred to as duality via truth in [21].
Duality via truth asserts that the notion of truth associated with the algebraic
semantics of a formal language determined by the class Alg of algebras, and
the notion of truth associated with its relational (Kripke-style) semantics deter-
mined by the class Frm of relational systems, are equivalent. That is, the same
formulas hold true in both classes of semantic structures. General principles
and applications of discrete duality are outlined in [22].

Tetravalent modal algebras were first introduced by A. Monteiro and later
studied in depth by I. Loureiro, A. V. Figallo, P. Landini, A. Ziliani, S. Celani,
A. Figallo–Orellano, and I. Pascual (see [2, 3, 7–13, 17–19]). In 2000, J. M.
Font and M. Rius [14] showed an interest in the logics stemming from the
lattice structures of these algebras. They introduced a sequent calculus (for
one of these logics) whose associated sentential logic coincides with the ma-
trix logic defined by the two matrices formed by the four-element tetravalent
modal algebra with each of its prime filters. Additionally, the groundbreaking
contributions by M. Coniglio and M. Figallo (see [4, 5]) have, in our view, sig-
nificantly revitalized and advanced the study and development of tetravalent
modal algebras.

The main goal of this paper is to establish two discrete dualities for tetrava-
lent modal algebras. To achieve this, we extend the discrete duality given in [6]
for De Morgan algebras. This paper is organized as follows: in the remainder
of this section, we review a discrete duality for De Morgan algebras. In Section
2, we introduce tetravalent modal algebras along with their basic properties,
which will be essential in the following sections. In Sections 3 and 4, we de-
velop discrete dualities for tetravalent modal algebras. Each of these dualities
involves a distinct class of frames and a unique definition of a complex algebra.

1.1. Discrete Duality for De Morgan Algebras.

In this section, we recall the discrete duality described in [6] for De Morgan
algebras.

Recall that an algebra 〈L,∨,∧,∼, 0, 1〉 is a De Morgan algebra if the reduct
〈L,∨,∧, 0, 1〉 is a bounded distributive lattice, and ∼ is a unary operation on L
satisfying the following identities: ∼ (x ∨ y) =∼ x∧ ∼ y, ∼∼ x = x, ∼ 0 = 1.

A proper lattice filter F of a De Morgan algebra 〈L,∨,∧,∼, 0, 1〉 is said to
be a prime filter if it satisfies the additional condition: If a∨ b ∈ F , then a ∈ F
or b ∈ F .

Given a relational structure 〈X,≤〉, where X 6= ∅ and ≤ is a reflexive,
antisymmetric, and transitive binary relation on X (i.e., a poset), we denote
by [≤]U the set {x ∈ X : ∀y, x ≤ y ⇒ y ∈ U}, where U is a subset of
X. Additionally, we denote by [Y ) ((Y ]) the set {x ∈ X : ∃y ∈ Y y ≤ x}



Discrete dualities for Monteiro’s tetravalent modal algebras – JMMR Vol. 14, No. 2 (2025) 139

({x ∈ X : ∃y ∈ Y x ≤ y}), for any Y ⊆ X. In particular, if Y is the singleton
set {x}, we will write [x) instead of [{x}).

A De Morgan frame is a structure 〈X,≤, g〉, where 〈X,≤〉 is a poset and
g : X −→ X is a function satisfying:

• g(g(x)) = x,
• if x ≤ y, then g(y) ≤ g(x).

Let 〈L,∨,∧,∼, 0, 1〉 be a De Morgan algebra, and let X (L) be the set of all
prime filters of L (see [1, Definition 3.7]). It is known that 〈X (L),≤c, gc〉 is a
De Morgan frame, where ≤c is defined as ⊆, and gc : X (L) −→ X (L) is the
involution defined by

(1) gc(S) = {x ∈ L :∼ x /∈ S}, for all S ∈ X (L).

Let S ∈ X (L). It is clear that gc(S) is non-empty set since ∼ 1 = 0 /∈ S.
Furthermore, if 〈X,≤, g〉 is a De Morgan frame, then

〈C(X),∩,∪,∼c, ∅, X〉

is a De Morgan algebra, where C(X) = {U ⊆ X : [≤]U = U} and ∼c: C(X) −→
C(X) is defined by

(2) ∼c U = X \ g(U), for every U ∈ C(X).

These results enable us to obtain a discrete duality for De Morgan algebras
by defining the embeddings as follows:

• h : L −→ C(X (L)), defined by h(a) = {S ∈ X (L) : a ∈ S},
• k : X −→ X(C(X)), defined by k(x) = {U ∈ C(X) : x ∈ U}.

1.2. Tetravalent Modal Algebras.

In 1966, L. Monteiro (see [20]) proved that the axiomatization proposed by
A. Monteiro for the variety of three-valued  Lukasiewicz algebras was indepen-
dent. To demonstrate the independence of one of these axioms, he considered
the four-valued tetravalent modal algebra T4 = 〈T,∧,∨,∼,�, 0〉, where the
lattice T = {1, N,B, 0} is defined as follows:

0

N B

1

with the following conditions:

∼ N = N, ∼ B = B, ∼ 0 = 1, ∼ 1 = 0,
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and a unary operator defined by:

�a =

{
1 if a = 1,

0 if a 6= 1.

Motivated by the previous example, A. Monteiro considered the class of
algebras generated by T4, which he called tetravalent modal algebras.

A tetravalent modal algebra is an algebra 〈L,∧,∨,∼,�, 0, 1〉 of type (2, 2, 1, 1, 0, 0)
such that its non-modal reduct 〈L,∧,∨,∼, 0, 1〉 is a De Morgan algebra, and
the unary operation � satisfies the following for all a ∈ L:

(t1) �a∧ ∼ a = 0,
(t2) ∼ �a ∧ a =∼ a ∧ a.

Equivalently, a tetravalent modal algebra can be defined as an algebra
〈L,∧,∨,∼,♦, 0, 1〉 of type (2, 2, 1, 1, 0, 0) such that its non-modal reduct 〈L,∧,∨,∼
, 0, 1〉 is a De Morgan algebra, and the unary operation ♦ satisfies the following
for all x ∈ L:

(t1)′ ∼ x ∨ ♦x = 1,
(t2)′ ∼ x ∧ x =∼ x ∧ ♦x.

On the other hand, let us recall that a 3-valued  Lukasiewicz–Moisil algebra
(see [1]) is an algebra 〈L,∨,∧,∼,�, 0, 1〉 such that 〈L,∨,∧,∼, 0, 1〉 is a Kleene
algebra, and � is a unary operation on L satisfying the following conditions

( L1) �a∧ ∼ a = 0,
( L2) ∼ a ∧ a = a∧ ∼ �a,
( L3) �a ∨�b ≤ �(a ∨ b).

Next, we will present some results on tetravalent modal algebras that will
be necessary for what follows.

Lemma 1.1. ( [14]) In every tetravalent modal algebra 〈L,∧,∨,∼,�, 0, 1〉 and
for all a, b ∈ L, the following hold:

(t3) ∼ �a ∨ a = 1,
(t4) �a∨ ∼ a = a∨ ∼ a,
(t5) �a∨ ∼ �a = 1,
(t6) �a∧ ∼ �a = 0,
(t7) �a ≤ a,
(t8) �1 = 1,
(t9) �0 = 0,

(t10) a ≤ b⇒ �a ≤ �b,
(t11) ��a = �a,
(t12) �(�a ∧�b) = �a ∧�b,
(t13) �(a ∧ b) = �a ∧�b,
(t14) � ∼ �a =∼ �a,
(t15) �(a ∨�b) = �a ∨�b,
(t16) ∼ a ∧�a = 0.
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Proposition 1.2. ( [18, Lemma 2.2]) Let 〈L,∨,∧,∼,♦, 0, 1〉 be a tetravalent
modal algebra. Then for all S ∈ X (L), the following conditions are equivalent:

(a) ♦a ∈ S,
(b) a ∈ S or a ∈ gc(S).

Proposition 1.3. ( [18, Lemma 2.4]) On a De Morgan algebra 〈L,∨,∧,∼, 0, 1〉,
it is possible to define a tetravalent modal algebra structure if and only if the
De Morgan frame 〈X (L),≤c, gc〉 satisfies the following condition:

(R) S ⊆ T ⇐⇒ S = T or gc(S) = T .

2. A Discrete Duality for Tetravalent Modal Algebras I

In this section, we establish a discrete duality for tetravalent modal algebras,
taking into account the results presented in [18].

Definition 2.1. A Loureiro frame is a De Morgan frame 〈X,≤, g〉 satisfying
the following additional condition:

(K) If x ≤ y, then x = y or g(x) = y.

Definition 2.2. The complex algebra of a Loureiro frame 〈X,≤, g〉 is a struc-
ture

〈C(X),∪,∩,∼c,♦c, ∅, X〉,
where 〈C(X),∪,∩,∼c, ∅, X〉 is the complex algebra of the De Morgan frame
〈X,≤, g〉 and for any U ∈ C(X), ♦c(U) = U ∪ g(U).

Definition 2.3. The canonical Loureiro frame of a tetravalent modal algebra
〈L,∧,∨,∼,♦, 0, 1〉 is

〈X (L),≤c, gc〉,
where 〈X (L),≤c, gc〉 is the canonical frame of the De Morgan reduct of L.

Lemma 2.4. The canonical Loureiro frame of a tetravalent modal algebra is a
Loureiro frame.

Proof. This is a direct consequence of the results established in Subsection 1.1
and Proposition 1.3. �

The following result is necessary for the proof of Lemma 2.4.

Lemma 2.5. Let 〈X,≤, g〉 be a Loureiro frame. Then, the set C(X) is closed
under the operation ♦c.

Proof. We will prove that C(X) is closed under the operation ♦c, i.e., for any
U ∈ C(X), [≤](U ∪ g(U)) = (U ∪ g(U)). The inclusion ⊆ follows from the
reflexivity of ≤. Now, we will show that U ∪ g(U) ⊆ [≤](U ∪ g(U)). Let
x, y ∈ X such that x ∈ U ∪ g(U) and x ≤ y. Then, x ∈ U or x ∈ g(U). In
the first case, since U = [≤]U , we have that y ∈ U . In the other case, applying
(K), we have x = y or g(x) = y, from which it follows in both cases that
y ∈ U ∪ g(U). �
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3. A Discrete Duality for Tetravalent Modal Algebras II

In this section, we describe a discrete duality for tetravalent modal algebras,
based on the duality indicated in Subsection 1.1 for De Morgan algebras. To
this end, we introduce the following definitions:

Definition 3.1. A structure 〈X,≤, g, R〉 is a tetravalent modal frame if 〈X,≤
, g〉 is a De Morgan frame and R is a binary relation on X such that

(K1) R is reflexive,
(K2) (≤ ◦R◦ ≤) ⊆ R,
(K3) If (x, y) ∈ R, then x ≤ y or g(x) ≤ y.
(K4) g(x) ∈ R(x), for any x ∈ X.

Remark 3.2. If, in the previous definition, the De Morgan frame 〈X,≤, g〉 is a
Kleene frame, that is, a De Morgan frame satisfying the condition x ≤ g(x) or
g(x) ≤ x for all x ∈ X, we obtain the notion of a 3-valued  Lukasiewicz–Moisil
frame as defined in [23].

Definition 3.3. The complex algebra of a tetravalent modal frame 〈X,≤, g, R〉
is a structure

〈C(X),∪,∩,∼c,�c, ∅, X〉,
where 〈C(X),∪,∩,∼c, ∅, X〉 is the complex algebra of the De Morgan frame
〈X,≤, g〉, and �c(U) = {x ∈ X : R(x) ⊆ U} for all U ∈ C(X).

Definition 3.4. A canonical tetravalent modal frame of a tetravalent modal
algebra 〈L,∨,∧,∼,�, 0, 1〉 is a structure

〈X (L),≤c, gc, Rc〉,
where:

(a) 〈X (L),≤c, gc〉 is the canonical frame associated with 〈L,∨,∧,∼, 0, 1〉,
(b) Rc is a binary relation on X (L),
(c) (S, T ) ∈ Rc ⇐⇒ �−1(S) ⊆ T.

Lemma 3.5. The canonical tetravalent modal frame of a tetravalent modal
algebra is a tetravalent modal frame.

Proof. Taking into account the results established in [6], we only need to prove
(K1)-(K4).

(K1): Let S ∈ X (L) and suppose that x ∈ �−1(S). Then �x ∈ S. Since
�x ≤ x, we have that x ∈ S. Therefore, �−1(S) ⊆ S, i.e., (S, S) ∈ Rc.

(K2): Let (P, F ) ∈ (≤c ◦Rc ≤c). Then there exist T, S ∈ X (L) such that
P ⊆ T , (T, S) ∈ Rc, and S ⊆ F . From the last two statements, we have that
�−1(T ) ⊆ F . Therefore, since P ⊆ T , we infer that (P, F ) ∈ Rc.

(K3): Let P, F ∈ X (L) such that (P, F ) ∈ Rc. Suppose that P 6⊆ F and
gc(P ) 6⊆ F . Then P ∩ gc(P ) 6⊆ F , because F is a prime filter. So there exists
a ∈ P ∩ gc(P ) and a /∈ F . Then ∼ a /∈ P . Since ∼ a ∧ a = a∧ ∼ �a, and
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a ∈ P , we have that ∼ �a /∈ P . Thus, �a ∈ gc(P ). Since �a∧ ∼ �a = 0,
∼ �a /∈ g(P ), i.e., �a ∈ P . Hence, a ∈ F , which contradicts (P, F ) ∈ Rc.

(K4): Let P ∈ X (L). Suppose that (P, gc(P )) /∈ Rc. Then there exists a ∈ L
such that �a ∈ P and a /∈ gc(P ). Thus, �a∧ ∼ a = 0 ∈ P , which is a
contradiction.

�

The following result is necessary for the proof of Lemma 3.7.

Lemma 3.6. Let 〈X,≤, g, R〉 be a tetravalent modal frame. Then, the set C(X)
is closed under the operation �c.

Proof. We will prove that C(X) is closed under the operation �c, i.e., for any
U ∈ C(X), [≤]�c(U) = �c(U). The inclusion ⊆ follows from the reflexivity of
≤. Assume that x ∈ �c(U). Let y ∈ X such that x ≤ y and take any z ∈ X
with (y, z) ∈ R. Hence, from the reflexivity of ≤ and (K2) we infer that (x, z) ∈
R. So, z ∈ U and therefore, x ∈ [≤]�c(U). Thus, �c(U) ⊆ [≤c]�c(U). �

Lemma 3.7. The complex algebra of a tetravalent modal frame is a tetravalent
modal algebra.

Proof. By the results established in [6], C(X) is a De Morgan algebra. Addi-
tionally, from Lemma 3.7, C(X) is closed under the operation �c. Therefore,
it only remains to verify the axioms (t1) and (t2).

(t1): Suppose that ∼ U ∩ �cU 6= ∅. Then, there exists y ∈∼ U such that
R(y) ⊆ U . Since g(y) ∈ R(y), we have that g(y) ∈ U , which is a contradiction.
Therefore, ∼ U ∩�cU = ∅.

(t2): First, note that by (K1) it follows that �cU ⊆ U . Then, we can infer
that ∼ U ∩ U ⊆∼ �cU ∩ U . The other inclusion follows from (K3). Indeed:
Suppose that x ∈∼ �cU ∩ U . Then, there exists z ∈ R(g(x)) such that z /∈ U .
From this, it follows that g(x) ≤ z. This implies that x ∈∼ U . Therefore,
x ∈ U∩ ∼ U , which completes the proof.

�

We now show that the embedding h : L −→ C(X (L)), defined in Subsection
1.1, preserves �, i.e.,

Lemma 3.8. For any a ∈ L, h(�a) = �c(h(a)).

Proof. Let F ∈ h(�a); then �a ∈ F . Suppose that P ∈ X (L) verifies that
(F, P ) ∈ Rc. Then, �−1(F ) ⊆ P and thus a ∈ P . Therefore, F ∈ �c(h(a)),
from which we infer that h(�a) ⊆ �c(h(a)). Conversely, assume that F ∈
�c(h(a)). Then for every P ∈ X (L), (F, P ) ∈ Rc implies that P ∈ h(a).
Suppose that �a /∈ F . Then �−1(F ) is a filter and a /∈ �−1(F ). Hence, there
exists T ∈ X (L) such that a /∈ T and �−1(F ) ⊆ T . This allows us to conclude
that (F, T ) ∈ Rc. From this, we have that T ∈ h(a), so a ∈ T , which is a
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contradiction. Therefore, h(�a) = �c(h(a)). Thus, by virtue of the results
established in [6], the proof is complete. �

We now show that the order-embedding defined in Subsection 1.1 preserves
the relation R, i.e.,

Lemma 3.9. Let 〈X,≤, g, R〉 be a tetravalent modal frame and let x, y ∈ X.
Then

(x, y) ∈ R if and only if (k(x), k(y)) ∈ Rc.

Proof. Assume that (x, y) ∈ R and suppose that U ∈ C(X) satisfies �cU ∈
k(x). Then it is easy to see that y ∈ U and so, (k(x), k(y)) ∈ Rc. Conversely,
let x, y ∈ X such that (k(x), k(y)) ∈ Rc. Then �c−1(k(x)) ⊆ k(y). On the
other hand, note that [≤](X \ (y]) ∈ C(X) and y /∈ [≤](X \ (y]). Therefore,
[≤](X \ (y]) /∈ k(y) and so, [≤](X \ (y]) /∈ �c−1(k(x)). Therefore, �c([≤
](X \ (y])) /∈ k(x), which implies that x /∈ �c([≤](X \ (y])). Then there exists z
such that (x, z) ∈ R and z /∈ [≤](X \ (y]). From this last assertion, there exists
w such that z ≤ w and w ≤ y, which allows us to conclude that z ≤ y. Hence,
by virtue of the reflexivity of ≤ and (K2), (x, y) ∈ R as required. �

Hence, we have a discrete duality between tetravalent modal frames and
tetravalent modal algebras.

Theorem 3.10.
(a) Every tetravalent modal algebra is embeddable into the complex algebra

of its canonical frame.
(b) Every tetravalent modal frame is embeddable into the canonical frame

of its complex algebra.

4. Conclusions and Future Work

In this work, we have developed two discrete dualities for tetravalent modal
algebras, extending the duality approach for De Morgan algebras. In partic-
ular, we presented the duality through Loureiro frames and the duality with
tetravalent modal frames, highlighting how these structures can capture modal
properties; in one case, we used binary relations that are useful for modal logics.
These results extend existing representations and provide a formal framework
that unifies both the algebraic properties and modal characteristics of these
logical systems.

In future work, we will continue studying discrete dualities in De Morgan
algebras with additional operations. It would also be interesting to establish a
discrete duality for De Morgan algebras extended with an intuitionistic nega-
tion, as defined in [15].
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