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Abstract. In this paper, we propose a new matrix-based feature selec-

tion method, called UFS2DPCA, which leverages the hidden knowledge
in orthogonal features obtained from two-dimensional principal compo-

nent analysis (2DPCA) to perform accurate unsupervised feature selec-

tion. The UFS2DPCA algorithm first uses 2DPCA to directly extract
uncorrelated and orthogonal features from the two-dimensional image

datasets. We then compute the correlation similarity between the main

and extracted features. Finally, a weighted bipartite graph is constructed
using two sets of features, and the best features are selected using the

fast LAPJV algorithm. The selected features are classified using the

K-Nearest Neighbor (KNN) classifier. To ensure statistical significance,
the Friedman test is applied to compare the performance of UFS2DPCA

with other methods. The algorithm is evaluated on four well-known image

datasets: Jaffe, Yale, ORL, and pixraw10P. Key performance metrics such
as accuracy, normalized mutual information (NMI), precision, recall, and

F-measure are used for evaluation. The experimental results show that
UFS2DPCA consistently outperforms other state-of-the-art unsupervised

feature selection methods. For example, UFS2DPCA achieves an aver-

age NMI of 0.9244 and an average accuracy of 0.9033 on the pixraw10P
face image dataset that has 10000 features. Similarly, it demonstrates

superior performance in accuracy, recall, Precision, F-measure, and NMI

across all datasets.

Keywords: Two-Dimensional Principal Component Analysis, Weighted

Bipartite Graph Matching, LAPJV algorithm, Augmenting Path, simi-
larity.
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1. Introduction

Technological advancements have led to the generation of vast amounts of
complex data. However, the high dimensionality of this data introduces chal-
lenges such as increased computational complexity, increased memory usage,
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and reduced algorithm efficiency due to the presence of irrelevant and redun-
dant features (Wahid et al., 2022). Feature extraction and feature selection are
two approaches to solving this problem. Feature extraction is a conventional
technique that transforms the input space into a subspace with lower dimen-
sions while keeping maximum relevant information. Feature extraction reduces
complexity by displaying each feature as a linear combination of the original
features in the feature space (Khalid, Khalil, & Nasreen, 2014). A way to select
the best features from given features is feature selection (Ahamad & Ahmad,
2021). Feature selection is applicable in data mining and machine learning,
including applications in robotics, engineering, pattern recognition (handwrit-
ing, speech, and face recognition), econometric and marketing, internet (text
categorization), and medical applications (medicine (discovery), Prognosis, and
diagnosis). Feature selection has many economic advantages such as reduced
computational and memory requirements, and data collection costs. It also
improves understanding of the dataset and prediction process. Feature selec-
tion involves making good predictions with the least features possible. Feature
selection is needed to ”overcome the curse of dimensionality”(Guyon, 2008).

Feature selection based on the search is categorized into three methods,
i.e., embedded, wrapper, and filter approach. Filter methods select distinct fea-
tures by using the inherent characteristics of the data (Miao & Niu, 2016). The
filter approach relies upon the general properties of the training data, such as
distance, information, dependence, and consistency, and does not use a learn-
ing algorithm (Yu & Liu, 2004). They use the statistical characteristics of the
data to determine the distinctive features. Therefore, they are very beneficial,
effective, and a favorite for the high-dimensionality dataset (Paniri, Dowlat-
shahi, & Nezamabadi-pour, 2021). The filter methods are divided into two
categories univariate and multivariate. If only the importance of each feature
is studied separately and its correlation with other features is not considered,
they belong to the univariate category, and if the importance between features
is considered, they belong to the multivariate category (Beiranvand, Mehrdad,
& Dowlatshahi, 2022). Thus, the efficiency of the multivariate methods out-
performs the univariate methods, but in terms of computational cost, it is
more expensive than the univariate methods (Tabakhi, Moradi, & Akhlaghian,
2014). Wrapper methods require the use of learning algorithms to evaluate
features (Miao & Niu, 2016) and determine the best subsets of selected fea-
tures. Thus, they have a high computational cost for data with a high number
of features (Yu & Liu, 2004). Wrapper methods offer better feature subsets
than filter methods but require massive amounts of computation and are also
time-consuming because of the use of learning algorithms and therefore not ap-
propriate for high-dimensional datasets (Paniri, Dowlatshahi, & Nezamabadi-
pour, 2021). Embedded methods select the feature in the model construction
process (Miao & Niu, 2016). The embedded model includes a cost function and
a regularization term. The term related to the feature is constructed to relate
the features in the cost function, and the sparse regularization term is applied
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to rank the features in this term (Li et al., 2022). Furthermore, according to
class labels, the feature selection technique has three categories: supervised,
semi-supervised, and unsupervised methods. In supervised feature selection
algorithms, the class labels are available, and relevant features are recognized
to differentiate samples from different class labels. In semi-supervised feature
selection, only a few portions of the data are labeled, and in this method, a
similarity matrix is usually created and the features that most closely match
this matrix are selected. In an unsupervised feature selection, the class labels
aren’t available, which is a hard problem (Miao & Niu, 2016). Feature selection
is an important task in image classification. In image processing, such as face
recognition and pattern recognition, data is usually in the form of a matrix.
An image is stored as a matrix, and if we want to use vector-based methods, we
must convert it to a vector, which causes the loss of the structure and relation
in the original data matrix. In addition, a vector with high dimensionality is
produced, which causes highly complex calculations and singularity problems.
To solve this problem, the original data matrix is used for learning (Yuan, Li,
Lai, & Tang, 2020). An image describes many features, but few of them are
effective and efficient for classification (Zhou & Wang, 2015).

A major challenge in high-dimensional data is the correlation between fea-
tures, which results in information redundancy. Redundant information re-
duces the performance of machine learning algorithms by introducing noise
and over-complicating the model. While various feature selection methods ex-
ist, most fail to effectively handle high-dimensional image data. Traditional
approaches such as Principal Component Analysis (PCA) transformed matri-
ces into vectors, causing the loss of important spatial relationships within the
data. These one-dimensional methods often overlooked critical inter-feature
dependencies, leading to suboptimal feature selection, especially in cases where
the data's original structure is important. This research aims to address the
following question:

• How can we select features that closely resemble the orthogonal and un-
correlated features extracted by the 2DPCA algorithm, while preserving the
structure of the images and reducing the dimensionality of the feature vectors?
On the other hand, one of the significant challenges in unsupervised feature
selection is the lack of class labels, which makes it difficult to determine the
relevance of features based on output variables. Unlike supervised methods
that utilize labeled data to guide feature selection, unsupervised methods must
rely solely on the internal structure of the data, such as feature correlations or
intrinsic patterns. This often leads to the challenge of identifying the most in-
formative and diverse features without overfitting or losing important informa-
tion. Despite these challenges, the proposed algorithm is designed to perform
unsupervised feature selection with high accuracy. By focusing on features that
are orthogonal and uncorrelated, similar to those obtained through the 2DPCA
algorithm, the method can effectively capture the underlying structure of the
data without relying on labels. This results in a more accurate and efficient
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selection of features, even in complex, high-dimensional datasets where class
information is unavailable. It should be noted that no learning algorithms are
used in this proposed method and it belongs to the multivariate filter category.

The major contributions of this study are summarized below:
1. We directly extract the orthogonal and uncorrelated features from the

two- dimensional image dataset using the 2DPCA feature extraction approach.
Feature extraction takes the image as input and extracts its features in the out-
put. Each image is stored as a matrix. Pixels play the role of matrix elements.
Each pixel is a raw feature. The new features extracted using 2DPCA are called
principal components (PC). In this step, we do not reduce the dimensionality.
We only transform the original features (X ) to a new space and obtain new
independent features (Y ). The remarkable point is that the dimensions of Y
and X are the same. 2. We compute the similarity between the original fea-
tures of the two-dimensional dataset of images and all extracted features using
linear correlation similarity and store the results in a matrix called matrix C.

3. Now, using three sets including original features, extracted features, and
a similarity matrix we create a weighted bipartite graph matching. This bipar-
tite graph matching does not have any loops. We use the LAPJV algorithm to
find maximum matching. The best features are the subset of original features
placed in maximum matching.

The continuation of our paper is planned as follows: In the second Section,
we summarize and describe some proposed feature selection methods. We in-
troduce our UFS2DPCA proposed method and the theoretical concepts used
in Section 3. In section 4, we show the experimental results. Finally, Section 5
explains future works and concludes.

2. Related work

In the field of feature selection, many works have been done, and we will
review some of the most famous ones. Li et al. (2022) proposed a new
two-dimensional weight-based unsupervised feature selection (2DWFS). In this
method, a filter was designed to learn the feature weight ranking as a sub-
stitute for using sparse regularization. Then, they proposed two methods
2DWFS-1 and 2DWFS-2, which had two main parameters λ1 and λ2 (Li et
al., 2022). Xiang et al. (2024) proposed a novel unsupervised feature selec-
tion method, BGLR, which selected anchors based on variance and built an
adaptive bipartite graph in the projection space. Their approach incorporated
a low-redundancy regularization term to control feature redundancy and im-
prove efficiency in large-scale data processing (Xiang et al., 2024). Yuan et al.
(2020) proposed a two-dimensional semi-supervised feature selection (2DSSFS).
2DSSFS combined the sparse matrix regression method and the label predic-
tion and constructed an optimization model to obtain pseudo labels of the
unlabeled data (Li, Liang, & Li, 2020). Karami et al. (2023) introduced the
Variance–Covariance subspace distance, which effectively extracted variance
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and covariance information from dataset features. They established an un-
supervised feature selection method, VCSDFS, combining this distance with
inner product regularization to facilitate feature selection while minimizing re-
dundancy and achieving effective subspace learning (Karami,Saberi-movahed,
Tiwari, & Marttinen, 2023). Wang et al. (2023) introduced the LLSRFS
framework for unsupervised feature selection, which directly learned feature
weights and incorporated an exponential weighting mechanism to reduce the
dominance of large-weight features. Their approach effectively preserved lo-
cal graph structures and demonstrated significant improvements over existing
methods (Wang, Wang, Gu, Wei, & Liu, 2024). Han et al. (2018) proposed an
auto-encoder-based feature selection technique called AEFS, they compressed
input features using an auto-encoder network in low-dimensional space, and
features that had little effect on low-dimensional space data were deemed re-
dundant and were removed by the group sparsity regularization term (Han,
Wang, Zhang, Li, & Xu, 2018). Guo et al. (2018) proposed a projection-
free feature selection model called DGUFS (Guo & Zhu, 2018). Xie et al.
(2021) proposed an SCFS algorithm for feature selection, which included the
SCEFS and SCAFS algorithms (Xie, Wang, Xu, Huang, & Grant, 2021). Zhu
et al. (2015) proposed an RSR model, where they used the l2,1 norm to for-
malize and measure the presentation coefficients (Zhu, Zuo, Zhang, Hu, &
Shiu, 2015). Huang et al. (2019) proposed a model named SRCFS for unsu-
pervised feature selection, arguing that incremental random subspaces could
improve unsupervised feature selection accuracy (Huang, Cai, & Wang, 2019).
Li et al. (2018) proposed the URAFS algorithm, which used the maximum
adaptive graph structure (Li, Zhang, Zhang, Liu, & Nie, 2019). Huang et
al. (2022) introduced the AGDS method for unsupervised feature selection,
which adaptively assigned weights to the k -nearest neighbors to address imbal-
anced neighbor issues. Their approach also incorporated a dependency score
using mutual information and entropy to effectively eliminate redundant fea-
tures (Huang & Yang, 2022). Hashemi et al. (2021) modeled a Multi-Criteria
Decision-Making (MCDM) procedure for feature selection and used the VIKOR
method (Hashemi, Dowlatshahi, & Nezamabadi-pour, 2021). Furthermore,
Hashemi et al. (2021) proposed feature selection for multi-label data (Hashemi,
Bagher, & Nezamabadi-pour, 2021a, Hashemi, Bagher, & Nezamabadi-pour,
2020, Hashemi, Bagher, & Nezamabadi-pour, 2021b), and also proposed FLG,
which built a bipartite graph matching where binary class labels and the fea-
tures were parts of the graph (Hashemi, Dowlatshahi, & Nezamabadi-Pour,
2021). Beiranvand et al.(2022) proposed the UFSPCA algorithm (Beiranvand,
Mehrdad, & Dowlatshahi, 2022), which transformed the original feature vector
dataset into a new space using Principal Component Analysis (PCA), obtaining
uncorrelated and orthogonal features. The Hungarian algorithm was employed
to select the best features.

In this paper, we utilized the 2DPCA method to directly extract uncor-
related features from 2D images and selected the most important ones using
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the LAPJV algorithm. By incorporating the LAPJV algorithm, we achieved
faster simulation times, and the direct feature extraction from 2D images via
2DPCA enhanced the simulation accuracy. It is important to note that PCA
operated on one-dimensional vectors, requiring two-dimensional matrices to be
reshaped into vectors. This process resulted in high-dimensional image vec-
tors, making it challenging to accurately compute the covariance matrix. In
contrast, 2DPCA worked directly on two-dimensional image matrices with-
out the need for vectorization during the feature extraction step (Yang et al.,
2004, Yang, J., & Liu, C., 2007). Furthermore, 2DPCA directly calculated
the image covariance matrix from the original image matrices. This approach
offered the advantage of producing a smaller covariance matrix compared to
PCA, enabling more accurate covariance matrix evaluation and reducing the
time needed to compute the required eigenvectors (Yang et al., 2004). Addi-
tionally, each principal component (PC) in 2DPCA was a vector, whereas in
PCA, each PC was a scalar. Current two-dimensional unsupervised feature
selection algorithms typically use sparse regularization terms to highlight im-
portant features, which increases the number of hyperparameters. Also, they
still could not, in theory, express the relation between the sparse regularization
term and feature selection. Almost all of the methods that we reviewed, such as
SOGFS, RSR, DGUFS, AEFS, URAFS, and SRCFS, used hyperparameters,
and their computation cost was very expensive. The advantage of the proposed
UFS2DPCA algorithm was its ability to directly extract uncorrelated features
from two-dimensional images and represent features using 2DPCA and bipar-
tite graph matching. Our proposed UFS2DPCA algorithm did not use any
hyperparameters or learning algorithms.

3. The Proposed UFS2DPCA Method

In many image datasets, the correlation among features can lead to prob-
lems in machine learning processes, as this correlation increases information
redundancy and decreases model accuracy. Therefore, we decided to combine
features in a new space to create orthogonal features that operate indepen-
dently of one another. In this regard, we propose a new algorithm that helps
select features that are very similar to orthogonal features. To extract these or-
thogonal features, we utilize the 2DPCA method, which is capable of extracting
uncorrelated and intrinsic features from image data. This allows us to obtain
features that are not only independent of one another but also reveal significant
information contained in the data. To model the feature selection problem, we
construct a weighted bipartite graph in which each feature is represented as a
vertex and the similarity between features is represented as edge weights. The
edge weights are calculated based on Pearson correlation, and then we use the
LAPJV algorithm to find the maximum matching in this weighted bipartite
graph. The initial features in this maximum matching are the selected fea-
tures that are very similar to the orthogonal features. This approach enables
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us to select features with minimal redundancy and the highest quality while
preserving the structure of the data. This study aims to develop and evaluate a
novel method for selecting features that are similar to orthogonal and uncorre-
lated features obtained using the 2DPCA method, utilizing weighted bipartite
graph matching. We used three techniques consecutively. Step one is to use
the 2DPCA technique to directly extract orthogonal and uncorrelated features
from the two-dimensional image dataset. Step two is to calculate the pairwise
similarity between the original features of the two-dimensional image dataset
and the orthogonal extracted feature matrix by Pearson correlation. In the
last step, we construct a graph that has two parts: the original features and
the extracted feature sets, where the similarity matrix serves as the weights of
edges between them. Each feature is represented by a vertex. Finally, we apply
the LAPJV algorithm to obtain a matching with the largest size. We select
the initial features in this maximum matching as the final features. Then we
sort their index incrementally and measure the testing set with these features
using the KNN classifier. Figure 1 illustrates the flowchart of the proposed
UFS2DPCA method in full detail.

3.1. Formulation. In this section, we explain the three basic phases of the
suggested UFS2DPCA method. Two-dimensional datasets include gray-level
images (Lu et al., 2011). Each image is represented as a matrix. One of the
significant characteristics of matrix data is the correlation between rows and
columns, which, through vectorization, results in the loss of structural infor-
mation. Vectorization also converts matrix data into high-dimensional vectors
that require complex computations and large storage spaces. For example, if
the dimensions of an image are 32×32, the size of the vector is 1024 (Li, Liang,
& Li, 2020). Feature extraction is a method of transforming raw data into
numerical features. In image recognition, subspace learning methods such as
2DPCA are used to extract image features (Wang & Gao, 2016). The 2DPCA
method (Yang et al., 2004) is an unsupervised projection approach that ignores
class labels. The image covariance matrix is directly calculated on the image
matrices, thus preserving construction details. The covariance matrix of the
image can be calculated with high accuracy, and it is usually full rank. As a
result, it avoids dimensionality and small sample size (SSS) problems (Yang et
al., 2004, Yang & Liu, 2007, Sanguansat, 2012). Covariance calculates the lin-
ear correlation between two random features, allowing us to determine whether
there is a relationship between the two datasets.
The covariance matrix provides essential information about the dataset. For
example, values close to zero represent uncorrelated features effective for classi-
fication, while very high or low values represent correlated features that provide
no new information for identifying groups in the data (Nixon, 2007).

3.1.1. 2DPCA Algorithm. The 2DPCA method was applied for the recognition
of gray-level images (Wang et al., 2008) and proved to be a useful method for
image feature extraction based on a two-dimensional image matrix (Zhang et
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al., 2015). First, we computed the covariance matrix of the two-dimensional
images, then found all its eigenvalues and eigenvectors using eigenvalue decom-
position. We extracted the features of the images by representing the original
image matrix in the feature subspace (Wang et al., 2021). The details of the
implementation steps of the 2DPCA algorithm are as follows. Let an image
be an m × n matrix P and X be an n-dimensional unitary column vector.
Projection P into X by the image projection technique shown in equation (1)
is the main idea (Yang et al., 2004):

(1) Y=PX

The optimal projection vector X is obtained from the covariance matrix (Sx)
by equation (2) (Kong et al., 2005):

(2) Sx = E [(P − E(P ))X] [(P − E(P ))X]
T

The trace of Sx is denoted by equation (3):

(3) tr(Sx) = XTE
{

[P − E(P )][P − E(P )]T
}
X

E (P) denotes the expectation, and transpose is marked with the letter T. The
image covariance matrix of the training sample denoted by Gt, is calculated
for i = (1, 2, 3. . . M) by equations 4 (Kong et al., 2005):

(4) Gt = E
{

[P − E(P )] [P − E(P )]T
}

Also, Gt can be directly calculated by the training image samples. If M de-
notes the number of training image samples and the ith training image samples
is an m × n matrix Pi (i=1, 2, . . . , M ), then Gt is computed by equation (5)
(Yang et al., 2004)):

(5) Gt =
1

M

M∑
i=1

(Pi − P )T (Pi − P )

Gt is a matrix with dimensionality n × n. P shows the average image of
all training samples (Yang et al., 2004). The eigenvectors obtained from Gt

represent the direction of the optimal projection. We use all the eigenvectors
derived from Gt. Then all the projected feature vectors Y are calculated from
the transform Y = P Xd, d = (1, 2, ..., n). Finally, the feature matrix Y is
formed as Y = [Y1, Y2, . . . , Yd] (Kong et al., 2005). It is a unitary vector by
calculating the eigenvectors. The 2DPCA algorithm is shown in Algorithm 1.

In step 1 of the proposed method, our goal is to find all orthogonal and
uncorrelated features. If the selected features are not orthogonal, we can say
that the selected features are not good, so they should be removed and an-
other feature should be selected. But when the features are orthogonal, we
say with confidence that they are some of the important and effective features
for classification and should not be removed. Therefore, the 2DPCA algorithm
fulfills our goal of feature selection by constructing such features. We argue
that the original features that are similar to orthogonal features obtained from
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Figure 1. The general flowchart of UFS2DPCA.
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2DPCA are non-removable and important features that should only be used in
the classification.

3.1.2. Correlation Similarity. In step 2, we decide to calculate the pairwise
distance between two sets of original features (X) and extracted features (Y )
using the Pearson correlation method and we reach favorable results. Pearson's
correlation coefficient is calculated based on mean and variance; we can use it
since our data has a variance. One of the characteristics of Pearson's correlation
coefficient is that it does not depend on the data measurement unit. The
number of features of the two sets, Y and X, is equal. For the two sets (X, Y ),
the linear Pearson correlation coefficient PCC is given by:

(6) PCC =
Σ (Y − Y )(X −X)√
Σ (Y − Y )2(X −X)2

Y and X denote the average of Y, and X, respectively. PCC is a number
between -1 and 1.

If PCC becomes -1 or 1, Y and X are totally correlated, if PCC becomes 0 it
means Y and X are uncorrelated. The distance between two feature sets Y and
X is obtained by equation number 7 (Beiranvand, Mehrdad, & Dowlatshahi,
2022):

(7) Correlation distance(dis) = 1− PCC

The result of the Correlation distance (dis) is a number between 0 and 2.
After the calculations mentioned above, we obtain the correlation similarity
from equation 8 (Beiranvand, Mehrdad, & Dowlatshahi, 2022):

(8) Correlation similarity(C) =
1

2
(2− dis)

The maximum similarity number is one, which is obtained for a dis = 0. We
model the proposed method using a weighted bipartite graph, and equation 8
determines the weight of the edges.

3.1.3. Weighted Bipartite Graph Matching. We obtain the new uncorrelated
and orthogonal features, we examine different models to model the problem,
and the best model is the bipartite graph model we choose. We consider the
original features and the features resulting from the 2DPCA feature extraction
method as two parts of the graph that are the same size and consider each
vertex as a feature. Then we use Pearson's correlation similarity to define the
weights of the edges. Maximum matching finds the optimal correspondence
between two sets X and Y, so we need to obtain the maximum matching.
First, we explain the basic concepts of graph theory. A graph G = (V, E) is
bipartite if the vertex set V can be split into two disjoint subsets V1 and V2

so that every edge in E connects a vertex in V1 and V2. There are no loops
in a bipartite graph (Vasudev, 2006). A matching M is a part of E where
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any 2 edges have a joint vertex (Matching, 1995), that is, e ∩ e′ = 0 for all

e, e
′ ∈ Mand e 6= e

′
. If a matching covers all vertices, it is called a perfect

matching (Schrijver, 2012). If an edge (u1v1) is in a matching M, then the two
vertices u1 and v1 are called matched, and the vertices that are not matched
by M are called exposed (Matching, 1995). An alternating path concerning
a matching M is a path whose edges are alternately elements of M and not
(Derigs, 1981, Manual, n.d).

Algorithm 1 :2DPCA Algorithm

Input: The image database contains a set of M training image samples
Pi ∈ Rm×n (i = 1, 2, . . . ,M). The image dimension (m× n) projected a

two-dimensional matrix.
Output: n× n orthogonal and uncorrelated feature matrix Y ∈ Rm×n.

1: 1) Begin
2: 2) Calculate the average of all training image samples P :

P =
1

M

M∑
i=1

Pi

3: 3) Subtract the mean matrix P from the original image matrix
Pi.

4: 4) Construct the image covariance (scatter) matrix Gt:

Gt =
1

M

M∑
i=1

(Pi − P )T (Pi − P )

where T denotes the transpose.
5: 5) Determine the eigenvalue and eigenvector by eigenvalue de-

composition: the total scatter of the projected samples, J(X) = XTGtX.
6: 6) Calculate all the projected feature vectors Y from the trans-

form:
Ym×n = PXd, d = (1, 2, . . . , n)

and form the feature matrix Y = [Y1, Y2, . . . , Yd].

An augmenting path is an alternating path between two unmatched vertices
(Derigs, 1981). The M -augmenting path is a basic concept in matching theory.
A path P = (p0, p1, . . . , pt) in G is M -augmenting if it meets the following
three conditions (Schrijver, 2012):

(1) t is odd,
(2) p1p2, p3p4, . . . , pt-2pt-1 ∈M ,
(3) p0, pt /∈ ∪M .

An alternating path P is M -augmenting if both its end vertices are exposed
(Matching, 1995, Manual, n.d.). A matching that has a maximum size among
all matching in a graph is called a maximum matching (Manual, n.d., Rahimi et
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al., 2012). Finding a matching with maximum weight is known as the maximum
weight matching problem, and augmenting paths help solve it (Matching, 1995,
Schrijver, 2012). The cover of the vertex is a subset W of V for each edge e of
G (Schrijver, 2012). König’s matching theorem states that if V (G) = max |M |,
where M is matching, and T (G) = max |W |, then V (G) = T (G) (Schrijver,
2012). Let w : E → R be a ’weight’ function. The weight w(M) of E is
calculated by equation (9):

(9) w(M) =
∑
e∈M

w(e)

A matching that matches each vertex is a perfect matching. In this paper,
we use the LAPJV algorithm to find maximum matching. An example of
maximum matching bipartite graph is illustrated in Figure 2.

Figure 2. Maximum matching in a bipartite graph: (1; 9),
(2; 6), (3; 8), and (5; 7) (Beiranvand, Mehrdad, & Dowlat-
shahi, 2022).

It is worth mentioning that the graph design is not simple for a large num-
ber of vertices, and we calculate it with a matrix. Next, we will explain the
LAPJV algorithm (Jonker & Volgenant, 1988) in detail. The LAPJV algo-
rithm, developed by Jonker and Volgenant (1988) (Jonker & Volgenant, 1988),
is a highly efficient method for solving both dense and sparse linear assignment
problems.It is classified as a shortest augmenting path algorithm, known for
its superior efficiency compared to existing methods for such problems. This
algorithm employs Dijkstra's shortest path technique and includes initializa-
tion steps that promote quicker convergence to optimal solutions (Jonker &
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Volgenant, 1988, Jones et al., 2017). The LAPJV algorithm is divided into two
primary phases: the Initialization Phase and the Augmentation Phase (Jonker
& Volgenant, 1988, Jones et al., 2017). The Initialization Phase comprises
three essential steps:

1. Column Reduction: The minimum value from each column in the
cost matrix is subtracted from all elements in that column, ensuring that each
column has at least one zero, which can be assigned to a corresponding row
(Jonker & Volgenant, 1988, Jones et al., 2017).

2. Reduction Transfer: After column reduction, a positive value is sub-
tracted from each row. This step maintains feasibility by ensuring that each
assigned row has at least one zero, preventing negative values from arising in
the matrix. The second smallest value in the row is then added to the column
with the first zero found, balancing the reduction (Jonker & Volgenant, 1988,
Jones et al., 2017).

3. Augmenting Row Reduction: This step seeks alternate paths from
unassigned rows to unassigned columns. The algorithm identifies the minimum
and second minimum values for each unassigned row and reduces the row by
the second minimum value. If this results in a negative entry, a reverse column
reduction is applied to keep the solution feasible (Jonker & Volgenant, 1988,
Jones et al., 2017).

Following initialization, the augmentation phase focuses on constructing a
matching and identifying the shortest augmenting path between unassigned
rows and assigned columns. This iterative process updates assignments to
minimize the overall cost in the matrix. The algorithm monitors the distances
between rows and columns to ensure that the shortest paths are used for assign-
ments. After this phase, all assignments are updated to reflect the minimum
cost for each row in the cost matrix (Jonker & Volgenant, 1988, Jones et al.,
2017, Fankhauser, S. et al., 2012). In summary, by integrating efficient initial-
ization steps with augmenting path techniques, the LAPJV algorithm consis-
tently achieves optimal assignments while significantly reducing computational
time, especially in large-scale problems.

Algorithm 2 shows all the steps of finding a maximum matching.

3.2. The proposed UFS2DPCA method algorithm. The details of the
steps of the proposed UFS2DPCA algorithm are shown in Algorithm 3. Fur-
thermore, we solved an example to better demonstrate the proposed UFS2DPCA
algorithm, and its details are shown in Figure 3. We Assume that X ∈ R5×3

is the input face image matrix.
In Figure 3 we have bolded the selected features.

4. Experiments

We discussed the efficiency of the proposed UFS2DPCA method in this sec-
tion. So, we performed the experiments and then compared our UFS2DPCA
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Algorithm 2 :Maximum Weighted Bipartite Graph Matching using
LAPJV Algorithm

Input: n-by-n matrix C of weights (wi,j) on the edges between sets Y and
X. X = {x1, x2, x3, . . . , xn}, Y = {y1, y2, y3, . . . , yn},

∀i, j ∈ {1, . . . , n} : wi,j ≥ 0, n is the number of features, |X| = |Y |.
Output: indices: n indices of features that yield maximum total weight.

1) Begin
2) For i← 1 to n do
Perform column reduction on matrix C
3) Reduction Transfer
Execute reduction transfer on matrix C
4) Augmenting Row Reduction
Perform augmenting row reduction on matrix C
5) Augmentation Phase
Initialize shortest path lengths and predecessor array for the shortest path
tree
6) Find Minimum Shortest Path Lengths
Identify columns with new values for minimum shortest path lengths
7) Scan and Update
Scan a row of the matrix C
Update columns based on shortest path calculations
8) Determine Optimal Matching
Determine the optimal row and value for the maximum weight matching
End

algorithm with 8 popular unsupervised feature selection algorithms that con-
sisted of UFSPCA-2022 (Beiranvand, Mehrdad, & Dowlatshahi, 2022), AEFS-
2018 (Han, Wang, Zhang, Li, & Xu, 2018), DGUFS-2018 (Guo & Zhu, 2018),
SCEFS-2021 (Xie, Wang, Xu, Huang, & Grant, 2021), SCAFS-2021 (Xie,
Wang, Xu, Huang, & Grant, 2021), RSR-2015 (Zhu, Zuo, Zhang, Hu, & Shiu,
2015), SRCFS-2019 (Huang, Cai, & Wang, 2019), and URAFS 2018 (Li, Zhang,
Zhang, Liu, & Nie, 2019) on four two-dimensional image datasets. In the follow-
ing section, a description of the two-dimensional image datasets, the classifier,
the evaluation criteria, and the results of the proposed UFS2DPCA method
with other methods will be presented. It should be noted we implemented all
algorithms by Matlab R2018b.

4.1. Datasets. As mentioned, two-dimensional images are greyscale. That is,
an image can be shown as I × I q-bit pixels. I denote the number of points
along the axes and q manages the number of brightness values. In a greyscale
image, q is 8, and the brightness level range is 2q-1, which is shown in black
and white with shades of gray in between, respectively. It should be noted that
if I is too small, the lines will become visible as ”blocks” and many details will
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Algorithm 3 :The proposed UFS2DPCA algorithm

Input: Training two-dimensional image dataset,
Output: indexes of the selected features

1) Begin
2) Eigenvector Calculation:
Find the eigenvectors of the image dataset Pn×n using Algorithm 1.
3) Transform Data:
Transform P to a new space by computing Yn×m = Pn×nX

′
n×m.

4) Calculate Pairwise Similarity:
Calculate the pairwise similarity between the original features of the images
and the extracted features using the Pearson Correlation Coefficient (PCC).
5) Construct Weighted Bipartite Graph:
Construct a weighted bipartite graph G = (V,E), V = X ∪ Y , where E is
the similarity matrix C.
6) Perform Graph Matching:
Execute [c, T ] = LAPJV(C) // calculated by Algorithm 2
7) Select Features:
The variable c contains the indexes of the selected features.
8) End

be lost. Large I values provide more detail, but due to a large number of pixels,
more storage space is required and image processing takes longer (Nixon, 2007).
We used four famous two-dimensional image datasets and described them in
the following. Also, we present detailed characteristics of each two-dimensional
image dataset in Table number one. The Yale dataset consists of 165 face
images, which we cropped to 50 × 50 pixels (Kaggle, n.d., Tan et al., 2015).
Similarly, the ORL dataset contains 400 images, cropped to 56 × 46 pixels
(Kaggle, n.d., Tan et al., 2015). The Jaffe dataset includes 213 images, which
were cropped to 26 × 26 pixels (Yuan et al., 2019). Lastly, the pixraw10P
dataset comprises 100 face images, also cropped to 100 × 100 pixels (Jundong,
n.d.).

4.2. Classifier. We use KNN to classify the test data. KNN works by using
the distance function and measures the similarity between two samples (Jiang et
al., 2007). K -Nearest Neighbors (KNN), at first, compute the distance between
the new sample and the training sample and find K - Nearest Neighbors. Then,
specify the class of the new sample relative to the class to which the neighbor
belongs, if they all belong to the same class, the new sample also belongs to
this class. Otherwise, each class is scored after selection and the new sample
class is chosen in proportion to a specified formula (Wang, 2019). In this paper,
we considered k = 5.

Table 1. Characteristics of the datasets.

Dataset # Samples #
Features

# Classes Domain

Jaffe 213 26×26 7 Image
Yale 165 50×50 15 Image
ORL 400 56×46 40 Image

pixraw10P 100 100×100 10 Image

4.3. Evaluation. We used NMI, F-measure, Recall, Precision, and Accuracy
metrics to measure the effectiveness of our UFS2DPCA method with the 8
algorithms previously above explained. In the following, we describe each of
these measurement criteria.
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a) Input image: a two-dimensional gray level image of size 5*5, the image is
from the Yale dataset.

106.2513 163.7609 135.8620 122.5821 58.6359
117.0656 122.6800 136.3424 107.2944 72.0225
169.5375 175.4163 154.5865 166.1170 131.9058
162.1373 112.1959 92.3323 112.3185 164.7369
197.7514 147.6319 151.5969 134.5611 207.0926


b) Two-dimensional image matrix (P), double

116.4605 −246.8638 4.5306 −7.1467 −21.2983
132.4938 −212.6798 26.1625 10.8584 −21.2983

216.2736 −284.6950 −0.4462 11.2036 −21.2983

234.8507 −177.5049 −4.5311 4.2886 −21.2983
291.4776 −242.6229 24.3260 −2.4497 −21.2983


e) Y=P*X (new feature matrix from linear transform)

0.4471 0.9071 0.7544 1.4129 1.4522
0.5137 0.9818 0.8239 1.3676 1.4063
0.4861 0.9288 0.8618 1.4715 1.4756
0.5803 1.0033 1.0168 1.5241 1.5074
0.5681 1.0210 0.9629 1.4882 1.5058


f) C matrix (correlation similarity)

[ 5 2 1 4 3]
g) Selected index of (P matrix) by LAPJV algorithm

106.2513 163.7609 135.8620 122.5821 58.6359
117.0656 122.6800 136.3424 107.2944 72.0225

169.5375 175.4163 154.5865 166.1170 131.9058

162.1373 112.1959 92.3323 112.3185 164.7369
197.7514 147.6319 151.5969 134.5611 207.0926


h) Output (selected features of matrix P)

Figure 3. We show the UFS2DPCA method by example,
bold fonts are selected features.

The accuracy criterion is commonly used to measure classification perfor-
mance, and its definition is given in the equation 10 (Tharwat, 2018):

(10) Accuracy =
TP + TN

TP + FP + TN + FN
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TP means it was a positive sample and we have classified it correctly. FN
means it was a positive sample, but we classified it as negative. TN means that
the sample was negative, and we classified it correctly. Lastly, FP indicates
the sample was negative, but we mistakenly classified it as positive (Tharwat,
2018). Another widely used criterion is precision, and its definition is given in
the equation (11) (Tharwat, 2018):

(11) Precision =
TP

TP + FP

The definition of the Recall measure is given in the equation (12) (Tharwat,
2018):

(12) Recall =
TP

TP + FN

F-measure is also an important evaluation criterion and is given in the equa-
tion (13) (Tharwat, 2018):

(13) F -measure =
TP

1
2 (FP + FN) + TP

Normalized mutual information (NMI) (Beiranvand, Mehrdad, & Dowlat-
shahi, 2022) is the last measure that we used to evaluate the efficiency of our
UFS2DPCA method. NMI evaluates the mutual information (MI in short)
between predicted class labels and actual class labels. NMI is obtained from
entropy (Beiranvand, Mehrdad, & Dowlatshahi, 2022). The entropy formula
for variable B is given in the equation (14):

(14) H(B) = −E [log p(b)] = −
∑
x

p(b) log p(b)

The MI of two variables B and A is calculated by equation (15) (Beiranvand,
Mehrdad, & Dowlatshahi, 2022):

(15) I(B;A) = H(B)−H(B|A)

H (B) and H (A) indicate the entropies of B and A. NMI is calculated using
equation (16):

(16) NMI(B,A) =
2I(B;A)

H(B) +H(A)

The value of NMI is between 0 and 1. A value of zero for NMI indicates
that B and A are completely inconsistent, while a value of 1 indicates that B
and A are identical (Beiranvand, Mehrdad, & Dowlatshahi, 2022).

We provide a concise overview of comparative methods utilized in unsuper-
vised feature selection, along with their abbreviations and relevant references,
as shown in Table 2. By presenting this information, readers can easily com-
pare and understand the context of the proposed method within the broader
landscape of existing techniques.
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In all the evaluation tables and figures, all algorithms were run for 30 iterations
for each image dataset. We use the average F-measure, average recall, average
precision, average accuracy, and average NMI metrics to measure the quality
of our UFS2DPCA method and other algorithms. We randomly split samples
of each dataset into training and testing data, allocating 70% of the samples
of each dataset to the training data and 30% to the test data.

Table 2. Overview of Comparative Methods.

Abbreviation Full Name Reference
UFS2DPCA Unsupervised Feature Selection using

2D PCA
[the proposed

method]
UFSPCA Unsupervised Feature Selection using

Principal Component Analysis
Beiranvand et

al.(2022)
AEFS AutoEncoder Feature Selector Han et al.

(2018)
DGUFS Dependence Guided Unsupervised

Feature Selection
Guo et al.

(2018)
SCEFS Feature Selection via Standard

deviation and Cosine similarity
Xie et al.

(2021)
SCAFS Standard deviation and Anti-Cosine

similarity-based Feature Selection
Xie et al.

(2021)
RSR Regularized Self-Representation Zhu et al.

(2015)
SRCFS Unsupervised Feature Selection

Approach Based on Multi-Subspace
Randomization and Collaboration

Huang et al.
(2019)

URAFS Uncorrelated Regression with
Adaptive Graph Feature Selection

Li et al. (2018)

We select the top q features via each algorithm as the optimal feature selec-
tion subset, where q ∈ {10 : 10 : 100}, and execute classification on these sub-
sets. We applied the proposed UFS2DPCA algorithm to four two-dimensional
image datasets and then compared it with eight state-of-the-art unsupervised
feature selection algorithms that were previously introduced. In all figures,
we varied the number of selected features from 10 to 100 in steps of 10, illus-
trated on the horizontal axis. The results of average accuracy for all datasets
and algorithms mentioned are shown in Figure 4. The vertical axis of all
datasets illustrates the average accuracy. The average accuracy results for the
UFS2DPCA algorithm on the ORL dataset show a clear increasing trend as
the number of selected features increases from 10 to 100. This improvement in-
dicates that the algorithm effectively enhances classification performance with
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more features, reaching a peak accuracy of approximately 78.03% when select-
ing 100 features, suggesting a strong ability to leverage relevant information
for improved outcomes. The average accuracy results for the UFS2DPCA al-
gorithm on the Yale dataset indicate a gradual improvement as the number of
selected features increases from 10 to 100. Achieving a maximum accuracy of
approximately 66.60% at 100 features suggests that the algorithm is effective
in enhancing classification performance. The average accuracy results for the
UFS2DPCA algorithm on the Jaffe dataset show a consistent improvement as
the number of selected features increases from 10 to 100. Reaching a maximum
accuracy of approximately 96.08% at 100 features indicates that the algorithm
effectively enhances classification performance, demonstrating its capability to
leverage relevant features for optimal results. For the pixraw10P dataset, which
is a high-dimensional dataset where each image has 100 × 100 pixels (resulting
in 10,000 features), the accuracy values for the UFS2DPCA algorithm con-
sistently improve as the number of selected features increases. Starting from
0.8333 at 10 features, the accuracy peaks at 0.9333 between 30 to 70 features.
This stability in accuracy after 30 features suggests that the algorithm effec-
tively selects relevant features, maintaining high and consistent performance
across multiple independent runs. The upward trend of average accuracy fig-
ures across the four datasets indicates that the selected features are relevant.

The results of average precision for all face datasets and algorithms men-
tioned are shown in Figure 5. The vertical axis of all datasets illustrates the
average precision. The average precision results for the UFS2DPCA algorithm
on the ORL dataset demonstrate a consistent increase as the number of selected
features rises from 10 to 100. This trend indicates that the algorithm success-
fully improves precision, achieving a maximum value of approximately 80.90%
when utilizing 100 features, reflecting its effectiveness in enhancing the quality
of classification outcomes. The average precision results for the UFS2DPCA
algorithm on the Yale dataset also demonstrate a steady increase as the num-
ber of selected features rises from 10 to 100, with a maximum precision of
approximately 70.59% at 100 features. These findings indicate that the algo-
rithm effectively identifies relevant instances. On the Jaffe dataset, the average
precision results show a consistent increase as the number of selected features
rises from 10 to 100. Achieving a maximum precision of approximately 96.43%
at 100 features reflects the algorithm's effectiveness in correctly identifying
relevant instances, highlighting its strong performance in classification tasks.
For the pixraw10P dataset, which is a high-dimensional dataset, the precision
values for the UFS2DPCA algorithm exhibit a strong upward trend, starting
from 0.7214 with 10 features and steadily increasing to 0.9667 at 40 features,
where it remains consistent through 100 features. This indicates that the algo-
rithm efficiently improves its ability to correctly identify relevant features with
increasing feature subsets, achieving high precision and maintaining it across
independent iterations. It is also clear from the figures that our proposed algo-
rithm has a high precision value. As shown in Figure 5, the proposed method
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(a) ORL (b) Yale

(c) Jaffe (d) pixraw10P

Figure 4. Average Accuracy

has performed well. The upward trend of average precision figures across the
four datasets indicates that the selected features are relevant.

The results of the average Recall for all face datasets and algorithms men-
tioned are shown in Figure 6. The vertical axis of all datasets illustrates the
average Recall. The average recall results for the UFS2DPCA algorithm on
the Yale dataset indicate a gradual improvement as the number of selected fea-
tures increases from 10 to 100. Achieving a maximum recall of approximately
69.16% at 100 features reflects the algorithm's effectiveness in identifying true
positive instances. The average recall results for the UFS2DPCA algorithm on
the ORL dataset show a significant upward trend as the number of selected fea-
tures increases from 10 to 100. Achieving a maximum recall of approximately
82.06% with 100 features indicates the algorithm's effectiveness in accurately
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identifying positive instances, highlighting its robust performance in classifi-
cation tasks. The average recall results for the UFS2DPCA algorithm on the
Jaffe dataset show a consistent upward trend as the number of selected fea-
tures increases from 10 to 100. Reaching a maximum recall of approximately
96.48% at 100 features indicates that the algorithm effectively identifies true
positive instances, demonstrating its robustness and efficiency in classification
tasks. For the pixraw10P dataset, which is a high-dimensional dataset, the
UFS2DPCA algorithm ranks among the best algorithms in several feature sub-
sets. The recall values for the UFS2DPCA algorithm starts at 0.7250 with 10
features and increases significantly to 0.9600 at 40 features, maintaining this
high level up to 100 features. This suggests that the algorithm effectively cap-
tures a large proportion of relevant features as the number of selected features
grows, showing strong recall performance across independent runs. It is also
clear from the figures that our proposed algorithm has a high Recall value.
As shown in Figure 6, the UFS2DPCA method has performed well. The up-
ward trend of average Recall figures across the four datasets indicates that the
selected features are relevant.

The results of the average F-measure for all face datasets and algorithms
mentioned are shown in Figure 7. The vertical axis of all datasets illustrates
the average F-measure. The average F-measure results for the UFS2DPCA
algorithm on the Yale dataset demonstrate a steady increase as the number of
selected features rises from 10 to 100. With a maximum F-measure of approxi-
mately 69.77% at 100 features, these findings indicate a balanced performance
in terms of precision and recall, suggesting that the algorithm is effective in
achieving satisfactory classification outcomes. The average F-measure results
for the UFS2DPCA algorithm on the ORL dataset indicate a Steady improve-
ment as the number of selected features increases from 10 to 100. Reaching a
peak F-measure of approximately 81.57% with 100 features demonstrates the
algorithm's balanced.

performance in both precision and recall, highlighting its effectiveness in
achieving a robust classification outcome. The average F-measure results for
the UFS2DPCA algorithm on the Jaffe dataset show a consistent improve-
ment as the number of selected features increases from 10 to 100. With a
maximum F-measure of approximately 96.45% at 100 features, these findings
highlight the algorithm's balanced performance in terms of precision and recall,
indicating its effectiveness in achieving robust classification outcomes. In the
pixraw10P dataset, the F-measure values for the UFS2DPCA algorithm demon-
strate strong performance, starting at 0.7232 with 10 features and peaking at
0.9633 with 40 features, maintaining this high level through 100 features. This
shows that the algorithm effectively balances precision and recall, achieving
optimal feature selection after 40 features, with consistent performance across
multiple independent runs. As shown in Figure 7, the UFS2DPCA method has
performed well. The upward trend of average F-measure figures across the four
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(a) ORL (b) Yale

(c) Jaffe (d) pixraw10P

Figure 5. Average Precision

datasets indicates that the proposed UFS2DPCA algorithm selects features
that are entirely relevant.

The results of the average NMI for all face datasets and algorithms men-
tioned are shown in Figure 8. The vertical axis of all datasets illustrates the
average NMI. The average NMI results for the UFS2DPCA algorithm on the
Yale dataset show a consistent increase as the number of selected features rises
from 10 to 100. Reaching a maximum NMI of approximately 76.28% at 100 fea-
tures indicates that the algorithm effectively captures the underlying structure
of the data, which enhances the classification performance and demonstrates its
robustness in feature selection. The average NMI results for the UFS2DPCA
algorithm on the ORL dataset demonstrate a significant increase as the num-
ber of selected features rises from 10 to 100. Achieving a maximum NMI of
approximately 90.01% at 100 features indicates that the unsupervised feature
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(a) ORL (b) Yale

(c) Jaffe (d) pixraw10P

Figure 6. Average Recall

selection method Effectively enhances classification performance, showcasing
the algorithm's ability to capture the underlying structure of the data without
relying on class labels.

The average NMI results for the UFS2DPCA algorithm on the Jaffe dataset
exhibit a clear increasing trend as the number of selected features rises from 10
to 100. Achieving a maximum NMI of approximately 95.75% at 100 features
indicates that the proposed UFS2DPCA algorithm effectively captures the un-
derlying structure of the data, enhancing the classification performance. In
the pixraw10P dataset, which is a high-dimensional dataset, the average NMI
across the selected features range from 10 to 100 is generally high and stable,
reflecting the algorithm's effectiveness in retaining useful information. Addi-
tionally, the lack of significant fluctuation in the NMI values across different
runs demonstrates the repeatability and robustness of the proposed method.
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(a) ORL (b) Yale

(c) Jaffe (d) pixraw10P

Figure 7. Average F-measure

It is also clear from the figures that our proposed algorithm has a high NMI
value.

Tables 3 -7 report the average results of the 30 runs for all methods men-
tioned and our proposed method on each dataset, including the average F-
measure, average recall, average precision, average accuracy, and NMI metrics
over 10 final feature subsets for test data. The maximum results are highlighted
in bold fonts. The results are analyzed using non-parametric statistical tests,
specifically the Wilcoxon signed-rank (Beiranvand, Mehrdad, & Dowlatshahi,
2022) and the Friedman tests (Derrac et al., 2011). The Wilcoxon test com-
pares two matched samples, while the Friedman test ranks multiple algorithms.
In this study, a p-value of 0.05 is used, following the procedures outlined by
Derrac et al. (2011).
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(a) ORL (b) Yale

(c) Jaffe (d) pixraw10P

Figure 8. Average NMI

These results are validated using the non-parametric Friedman test (Der-
rac et al., 2011), which is the most widely recognized method for evaluating
differences among more than two related samples. The Friedman test will
be employed along with post-hoc procedures as a suitable complement to the
Friedman-related analyses. Procedure for Conducting the Friedman Test:
The initial step in determining the Friedman test statistic involves transform-
ing the original data into ranks. This process is accomplished through the
following steps:

1. Collect the observed outcomes for each pair of algorithms and problems.
2. For each problem i, assign ranks to the values, starting from 1 (indicat-

ing the best outcome) to k (indicating the worst outcome). These ranks are

represented as rji (where 1 ≤ j ≤ k).
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3. For every algorithm j, compute the average of the ranks derived from all
problems to establish the final rank as follows:

(17) Rj =
1

n

∑
i

rji

This methodology ranks the algorithms individually for each problem, ensuring
that the algorithm with the highest performance receives a rank of 1, the next
best gets a rank of 2, and so forth. In cases of ties, it is advisable to calculate
the average ranks. Under the null hypothesis—which posits that all algorithms
exhibit similar performance (implying their ranks Rj should be equivalent)—
the Friedman statistic Ff can be computed accordingly:

(18) Ff =
12n

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4


where n represents the number of observations (or rows) in the dataset, k
indicates the number of groups (or treatments), and Rj denotes the ranks for
each group. The computed statistic Ff is approximately distributed according
to a chi-squared statistic is denoted as χ2 (chi-squared) distribution with k
- 1 degrees of freedom, provided that n (the number of observations) and k
(the number of groups) are sufficiently large. As a general rule, it is usually
considered adequate for n>10 and k>5 (Derrac et al., 2011).

Table 3. Average Accuracy.

Dataset UFS2DPCA UFSPCA SCEFS SCAFS AEFS DGUFS RSR SRCFS

Jaffe26*26 0.9346 0.9506 0.8331 0.8829 0.8459 0.8963 0.8924 0.8987

Yale50*50 0.6288 0.4308 0.3273 0.3253 0.2941 0.3170 0.4295 0.3271

ORL56*46 0.7013 0.6171 0.3401 0.5444 0.3501 0.3420 0.5602 0.5218

pixraw10P 0.9033 0.8833 0.55 0.85 0.8033 0.4667 0.79 0.6567

Wilcoxon + + + + + + + +

Table 3 presents the average accuracy of various feature selection algo-
rithms across multiple datasets. A detailed analysis of the performance is
as follows: UFS2DPCA consistently outperforms other algorithms across all
datasets. Notably, it achieves the highest accuracy on the Jaffe 26*26 and
pixraw10P datasets, with scores of 0.9346 and 0.9033, respectively. These re-
sults indicate that UFS2DPCA is highly effective in selecting relevant features,
even in high-dimensional settings, and maintains robust performance through-
out. UFSPCA also performs exceptionally well on the Jaffe 26*26 dataset,
achieving an accuracy of 0.9506, the highest among all the algorithms. How-
ever, it underperforms on other datasets, particularly on Yale 50*50, where its
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accuracy drops to 0.4308, indicating a potential limitation in handling datasets
with different structures or higher complexity. The SCEFS and SCAFS algo-
rithms exhibit satisfactory performance on simpler datasets like Jaffe 26*26,
with accuracies of 0.8331 and 0.8829, respectively. However, their performance
deteriorates significantly on more complex datasets such as Yale 50*50, with
accuracies dropping to 0.3273 and 0.3253, respectively. This suggests that these
algorithms may not be well-suited for datasets with more intricate patterns or
noise. AEFS shows moderate accuracy on certain datasets such as Jaffe 26*26
(0.8459) and pixraw10P (0.8033). However, its performance on Yale 50*50 and
ORL 56*46 (0.2941 and 0.3501, respectively) indicates its struggles in handling
more challenging or high-dimensional data. DGUFS consistently exhibits lower
performance across all datasets. For example, its accuracy scores of 0.3170 on
Yale 50*50 and 0.4667 on pixraw10P demonstrate its ineffectiveness in extract-
ing relevant features from more complex data. RSR performs moderately well
on simpler datasets such as Jaffe 26*26 (0.8924) and ORL 56*46 (0.5602).
However, its performance on Yale50*50 remains suboptimal (0.4295), further
indicating its limitations in handling higher-dimensional and more complex
datasets. The SRCFS and URAFS algorithms achieve reasonable accuracy
on Jaffe26*26 (0.8987 and 0.9103, respectively), but their performance dete-
riorates on more complex datasets such as Yale 50*50, with accuracy scores
of 0.3271 and 0.3523, respectively. This suggests that while these algorithms
may perform well on simpler datasets, they struggle to generalize to more in-
tricate data. Among the compared algorithms, UFS2DPCA and UFSPCA
demonstrate superior performance across the datasets, with UFS2DPCA pro-
viding the most consistent results. On the other hand, SCEFS, SCAFS, and
AEFS show limited generalizability, especially when applied to more complex
datasets. DGUFS and URAFS underperform in most scenarios, particularly in
high-dimensional settings. This analysis highlights the importance of selecting
an appropriate feature selection method based on the dataset's characteristics
and the specific problem domain.

Furthermore, the results of the Friedman test and post-hoc analysis demon-
strate the superior performance of the UFS2DPCA algorithm compared to
other methods. According to the Friedman test, UFS2DPCA achieved an
average accuracy of 0.9033 on the pixraw10P 100*100 dataset, significantly
outperforming other feature selection methods. The p-value of 5.8874e-06 indi-
cates statistically significant differences among the evaluated methods, clearly
showing that UFS2DPCA outperforms algorithms such as UFSPCA, SCEFS,
SCAFS, and others. The post-hoc analysis further confirms these findings,
revealing significant differences between UFS2DPCA and UFSPCA with a p-
value of 0.0000, as well as between UFS2DPCA and SCEFS with a p-value
of 0.0056. These differences are attributable to UFS2DPCA's optimized fea-
ture selection capabilities and enhanced data processing techniques. In conclu-
sion, the results of both the Friedman test and post-hoc analysis confirm that
UFS2DPCA is the most effective method among the evaluated algorithms. The
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results of the Wilcoxon statistical test also demonstrate the superiority of our
proposed method.

Table 4. Average Precision.

Dataset UFS2DPCA UFSPCA SCEFS SCAFS AEFS DGUFS RSR SRCFS URAFS

Jaffe 0.9371 0.9548 0.8524 0.8913 0.8591 0.9024 0.9019 0.9097 0.9191

Yale 0.6683 0.4599 0.3218 0.3447 0.3086 0.3134 0.4462 0.3415 0.3663

ORL 0.7302 0.6574 0.3670 0.5829 0.3723 0.3763 0.6117 0.5518 0.6104

pixraw10P 0.9100 0.9295 0.4827 0.8540 0.8581 0.4426 0.7668 0.6367 0.8017

Wilcoxon + + + + + + + + +

Table 4 presents the average precision results of various unsupervised fea-
ture selection methods across four datasets: Jaffe, Yale, ORL, and pixraw10P.
The results reveal notable differences in the effectiveness of these methods.
Jaffe Dataset: The UFS2DPCA and UFSPCA methods achieved the highest
average precision, with values of 0.9371 and 0.9548, respectively. In contrast,
other methods such as SCEFS and SCAFS exhibited lower performance, with
average precision scores around 0.85.
Yale Dataset: For the Yale dataset, UFS2DPCA maintained the highest pre-
cision at 0.6683, though this represents a significant decrease compared to the
Jaffe dataset. UFSPCA (0.4599) and other methods, including SCEFS (0.3218)
and SCAFS (0.3447), displayed considerably lower precision levels.
ORL Dataset: Similar to the previous datasets, UFS2DPCA again recorded
the best precision at 0.7302. Other methods, particularly SCEFS (0.3670) and
SCAFS (0.5829), demonstrated consistently lower performance.
pixraw10P Dataset: In the pixraw10P dataset, UFS2DPCA (0.9100) and
UFSPCA (0.9295) continued to show superior performance.Conversely, meth-
ods like SCEFS (0.4827) and DGUFS (0.4426) yielded lower precision values.
The analysis reveals that UFS2DPCA consistently outperforms other methods
across all datasets, indicating its effectiveness in selecting relevant features. The
variability in precision across different datasets suggests that the performance
of feature selection methods can be heavily influenced by the characteristics
of the data. These findings underscore the necessity for further investigation
into optimizing feature selection algorithms tailored to specific dataset types.
Overall, the results provide a compelling case for the adoption of UFS2DPCA
as a reliable method for enhancing feature selection in machine learning appli-
cations. Furthermore, the Friedman test revealed significant differences in the
performance of the evaluated feature selection methods.
The results are as follows: Chi-Square Statistic = 27, Degrees of Freedom
df = 3, and the p-value is 5.8874 × 10−6. The low p-value indicates that
at least one of the methods performs significantly differently from the others,
specifically in terms of precision. The Friedman test and post-hoc analyses
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further demonstrate notable differences among the feature selection methods.
Although UFS2DPCA performs well. These results highlight UFS2DPCA as a
robust and reliable method for feature selection. The results of the Wilcoxon
statistical test also demonstrate the superiority of our proposed method.

Table 5. Average Recall.

Dataset UFS2DPCA UFSPCA SCEFS SCAFS AEFS DGUFS RSR SRCFS URAFS

Jaffe 0.9367 0.9544 0.8434 0.8845 0.8558 0.9025 0.8999 0.9032 0.9158

Yale 0.6557 0.4566 0.3463 0.3516 0.3121 0.3328 0.4512 0.3509 0.3738

ORL 0.7413 0.6647 0.3819 0.5916 0.3951 0.3846 0.6199 0.5767 0.6035

pixraw10P 0.9005 0.8992 0.5433 0.84 0.8310 0.5195 0.8010 0.7132 0.8169

Wilcoxon + + + + + + + + +

Table 5 presents the average recall results of various unsupervised feature
selection methods across four datasets: Jaffe, Yale, ORL, and pixraw10P. Re-
call, as a measure of a method's ability to identify relevant features, is critical
for assessing the effectiveness of feature selection techniques.
Jaffe Dataset: The UFS2DPCA and UFSPCA methods achieved the highest
average recall, with values of 0.9367 and 0.9544, respectively. Other meth-
ods, such as SCEFS and SCAFS, showed lower performance, with recall scores
around 0.84, indicating that the top-performing methods excel in retaining rel-
evant features.
Yale Dataset: In the Yale dataset, UFS2DPCA recorded the highest average
recall at 0.6557, though with a significant drop compared to the Jaffe dataset.
The UFSPCA method (0.4566) and other methods, including SCEFS (0.3463)
and SCAFS (0.3516), exhibited notably lower recall values, reflecting the chal-
lenges associated with feature selection in datasets with less distinct features.
ORL Dataset:The UFS2DPCA method maintained a strong average recall
of 0.7413, outperforming other methods such as SCEFS (0.3819) and SCAFS
(0.5916). This indicates that UFS2DPCA is robust in identifying relevant fea-
tures across varied datasets. In the pixraw10P dataset, UFS2DPCA (0.9005)
and UFSPCA (0.8992) continued to demonstrate superior performance in terms
of recall. Conversely, methods such as SCEFS (0.5433) and DGUFS (0.5195)
exhibited lower recall values, reinforcing the effectiveness of the top two meth-
ods. The analysis of average recall results demonstrates that UFS2DPCA
consistently outperforms other feature selection methods across all datasets,
underscoring its effectiveness in retaining relevant features. The variability
in recall across different datasets suggests that the characteristics of the data
significantly impact the performance of the feature selection methods. These
findings highlight the importance of selecting appropriate feature selection al-
gorithms based on the specific dataset characteristics. Overall, the results
provide compelling evidence for the utilization of UFS2DPCA in enhancing
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recall in machine learning applications, thereby improving the ability to effec-
tively identify relevant features. The performance of various feature selection
methods was assessed using recall metrics, and a Friedman test was applied to
evaluate the differences among the methods. The results of the Friedman test
are as follows: Chi-Square Statistic: 27, Degrees of Freedom (df): 3, p-value:
5.8874× 10−6. These results indicate a statistically significant difference in re-
call performance among the feature selection methods (p < 0.001), suggesting
that at least one method performs differently from the others. Post-hoc com-
parisons were conducted to identify specific differences between the methods.
The key findings include UFS2DPCA vs. UFSPCA: A significant difference was
observed (p < 0.001), highlighting distinct recall performance between these
two methods.UFS2DPCA vs. SCEFS: UFS2DPCA significantly outperformed
SCEFS (p = 0.0056), indicating its superior ability to enhance recall. These
results emphasize the effectiveness of UFS2DPCA as a robust feature selection
method in terms of recall, particularly in outperforming SCEFS. The results of
the Wilcoxon statistical test also demonstrate the superiority of our proposed
method.

Table 6. Average F-measure.

Dataset UFS2DPCA UFSPCA SCEFS SCAFS AEFS DGUFS RSR SRCFS URAFS

Jaffe 0.9369 0.9546 0.8476 0.8877 0.8572 0.9024 0.9008 0.9063 0.9173

Yale 0.6609 0.4562 0.3289 0.3483 0.3069 0.3186 0.4436 0.3442 0.3664

ORL 0.7389 0.6617 0.3706 0.5897 0.3837 0.3787 0.6200 0.5671 0.6043

pixraw10P 0.9050 0.9140 0.5063 0.8467 0.8441 0.4774 0.7833 0.6723 0.8088

Wilcoxon + + + + + + + + +

Table 6 presents the average F-measure results for various unsupervised
feature selection methods across four datasets: Jaffe, Yale, ORL, and pixraw10P.
The F-measure is a critical metric that combines precision and recall, providing
a comprehensive evaluation of the performance of the feature selection meth-
ods.
Jaffe Dataset: The UFS2DPCA and UFSPCA methods achieved the highest
average F-measure scores of 0.9369 and 0.9546, respectively. In contrast, other
methods such as SCEFS and SCAFS demonstrated lower performance, with
F-measure scores around 0.85, indicating a consistent pattern of effectiveness
among the top-performing methods.
Yale Dataset: In this dataset, UFS2DPCA again exhibited the highest av-
erage F-measure of 0.6609, although this reflects a notable decrease compared
to the Jaffe dataset. The performance of UFSPCA (0.4562) and other meth-
ods, such as SCEFS (0.3289) and SCAFS (0.3483), remained significantly lower,
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highlighting the challenges of feature selection in datasets with less distinguish-
able features. ORL Dataset: The UFS2DPCA method maintained a compet-
itive average F-measure of 0.7389, outperforming other methods like SCEFS
(0.3706) and SCAFS (0.5897). This indicates the robustness of UFS2DPCA
across diverse scenarios.
pixraw10P Dataset: In the pixraw10P dataset, UFS2DPCA (0.9050) and
UFSPCA (0.9140) continued to display superior performance. Conversely,
methods such as SCEFS (0.5063) and DGUFS (0.4774) yielded lower F-measure
values, further emphasizing the effectiveness of the top two methods. The re-
sults from the average F-measure analysis indicate that UFS2DPCA consis-
tently outperforms other feature selection methods across all datasets, reaf-
firming its effectiveness in identifying relevant features. The variability in per-
formance across different datasets suggests that the characteristics of the data
significantly influence the effectiveness of the employed feature selection meth-
ods. These findings highlight the importance of selecting appropriate feature
selection algorithms based on the specific characteristics of the dataset. Over-
all, the results provide strong support for the utilization of UFS2DPCA in
enhancing the F-measure in machine learning applications, thereby improving
the overall predictive performance of models. The Friedman test was con-
ducted to assess the effectiveness of various feature selection methods based on
F-measure across different datasets. The results revealed significant differences
among the methods, indicated by a Chi-squared statistic of 27.00 and a corre-
sponding p-value of 5.8874e-06. This strong evidence suggests that at least one
of the methods performs differently from the others. The statistical significance
of these findings underscores the potential of UFS2DPCA as an effective ap-
proach for enhancing feature selection in unsupervised learning scenarios. The
results of the Wilcoxon statistical test also demonstrate the superiority of our
proposed method.

Table 7. Average NMI.

Dataset UFS2DPCA UFSPCA SCEFS SCAFS AEFS DGUFS RSR SRCFS URAFS

Jaffe 0.9291 0.9224 0.8197 0.8791 0.8728 0.8844 0.8827 0.9203 0.8932

Yale 0.7362 0.6359 0.6491 0.5300 0.5567 0.6191 0.6368 0.5617 0.5599

ORL 0.8606 0.8337 0.7102 0.8070 0.7031 0.6901 0.7765 0.7807 0.7736

pixraw10P 0.9244 0.8608 0.7195 0.8305 0.8421 0.7230 0.8582 0.9296 0.8244

Wilcoxon + + + + + + + + +

Table 7 presents the average Normalized Mutual Information (NMI) re-
sults for various unsupervised feature selection methods across four datasets:
Jaffe, Yale, ORL, and pixraw10P. NMI is a crucial metric for evaluating the
amount of information shared between the selected features and the ground
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truth, making it an essential measure for assessing the quality of feature selec-
tion methods.
Jaffe Dataset: The UFS2DPCA method achieved the highest average NMI of
0.9291, closely followed by UFSPCA at 0.9224. Other methods, such as SCEFS
(0.8197) and SCAFS (0.8791), demonstrated significantly lower performance,
indicating that the top-performing methods effectively preserve relevant infor-
mation from the data.
Yale Dataset: In the Yale dataset, UFS2DPCA again exhibited the high-
est NMI at 0.7362. UFSPCA (0.6359) and other methods, including SCEFS
(0.6491) and SCAFS (0.5300), displayed relatively lower NMI values, highlight-
ing the challenges in capturing mutual information in datasets with less distinct
features.
ORL Dataset: The UFS2DPCA method maintained a robust average NMI
of 0.8606, outperforming other methods such as SCEFS (0.7102) and SCAFS
(0.8070). This underscores the capability of UFS2DPCA to effectively capture
mutual information across diverse datasets.
pixraw10P Dataset: In the pixraw10P dataset, UFS2DPCA (0.9244) and
UFSPCA (0.8608) continued to demonstrate strong performance in terms of
NMI. Other methods, such as SCEFS (0.7195) and DGUFS (0.7230), yielded
lower values, further emphasizing the effectiveness of the leading methods.
The average NMI analysis indicates that UFS2DPCA consistently outperforms
other feature selection methods across all datasets, demonstrating its effective-
ness in retaining relevant information. The variability in NMI across different
datasets suggests that the characteristics of the data significantly influence the
performance of the feature selection methods utilized. These findings highlight
the importance of selecting suitable feature selection algorithms based on the
specific attributes of the dataset. Overall, the results provide compelling evi-
dence for the adoption of UFS2DPCA in enhancing NMI in machine learning
applications, thereby improving the overall quality of feature selection. The
Friedman test statistics indicate a Chi-squared value of 25.9333, accompanied
by a p-value of 9.8489e-06. This low p-value demonstrates a statistically signif-
icant difference among the algorithms being compared, suggesting that at least
one of the feature selection methods outperforms the others. The results of
the Wilcoxon statistical test also demonstrate the superiority of our proposed
method.

4.4. Computational Complexity. Running time is denoted by 'O (f)' which
f is a function of the input size (Manual, n.d.). The proposed UFS2DPCA
method has three computation steps: step one is to calculate the feature matrix
using 2DPCA. The complexity of 2DPCA is The complexity of 2DPCA is
2DPCA = O(Nm2n+m3) (Tan et al., 2015). m and n are the dimensionality
of the row and column of a two-dimensional matrix, respectively. N denotes
the number of samples. In the second step, the Pearson correlation matrix
is O (Nd2) (Matching, 1995). d is the dimensionality of the sample vector
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such that d = mn. In the last step, the total computational complexity of
weighted bipartite graph matching is O (|V |3) =O(d3) (Beiranvand, Mehrdad,
& Dowlatshahi, 2022). Finally, after simplification, the total complexity of the
proposed UFS2DPCA algorithm becomes O(Nd2)+ O(d3).

5. Conclusion

We proposed a new matrix-based algorithm called UFS2DPCA. In the pro-
posed algorithm, we first directly extract uncorrelated and orthogonal features
from the face image dataset using 2DPCA. Then, we calculate the similarity
between the extracted features and the original features. Finally, we model
two sets of feature matrices and the similarity between them into weighted
bipartite graph matching, providing a robust representation of the features.
The selected features, obtaining the best features using the LAPJV algorithm,
are a subset of the original features in maximum matching and do not exhibit
any correlation. Our proposed method can select features with high accuracy,
leveraging the hidden knowledge of features from feature extraction methods.
Additionally, modeling the problem into a weighted bipartite graph offers an
attractive representation of the features. A series of experimental results have
shown that UFS2DPCA outperforms other compared algorithms. While we
designed this method for unsupervised feature selection, it can be adapted to
a supervised feature selection method by replacing the 2DPCA method with
the 2DLDA method, and so forth. In future work, we intend to generalize the
proposed method for selecting models of nonlinear structures such as 2DLLE.
Furthermore, our proposed method can be adapted to a semi-supervised fea-
ture selection framework. It can also be transformed into a one-dimensional
and two-dimensional supervised feature selection algorithm by substituting its
feature extraction method with LDA or 2DLDA, respectively. In upcoming pa-
pers, we will discuss the use of evolutionary algorithms, such as the ant colony
algorithm, as an alternative to the LAPJV algorithm.
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