DECOMPOSITION OF IDEALS INTO PSEUDO-IRREDUCIBLE IDEALS IN AMALGAMATED ALGEBRA ALONG AN IDEAL

ESMAEIL ROSTAMI

DEPARTMENT OF PURE MATHEMATICS, MAHANI MATHEMATICAL RESEARCH CENTER, FACULTY OF MATHEMATICS AND COMPUTER, SHAHID BAHONAR UNIVERSITY OF KERMAN, KERMAN, IRAN E-MAIL: E_ROSTAMI@UK.AC.IR

(Received: 17 August 2017, Accepted: 26 September 2017)

ABSTRACT. Let $f: A \to B$ be a ring homomorphism and J an ideal of B. In this paper, we give a necessary and sufficient condition for the amalgamated algebra along an ideal $A \bowtie^f J$ to be J-Noetherian. Then we give a characterization for pseudo-irreducible ideals of $A \bowtie^f J$, in special cases.

AMS Classification: 13A15, 13B99.

Keywords: Amalgamated algebra along an ideal, *J*-Noetherian, Complete comaximal factorization, Pseudo-irreducible ideal.

1. INTRODUCTION

Throughout this paper all rings will be commutative with identity. We denote by $\operatorname{Spec}(R)$ and $\operatorname{Max}(R)$ the set of prime ideals and the set of maximal ideals of R, respectively.

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER VOL. 6, NUMBERS 1-2 (2017) 13-24. DOI: 10.22103/JMMRC.2017.10782.1046 ©MAHANI MATHEMATICAL RESEARCH CENTER

¹³

E. ROSTAMI

Let A and B be two rings and let J be an ideal of B. Then, for a ring homomorphism $f: A \to B$ consider the following subring of $A \times B$:

$$A \bowtie^{f} J := \{(a, f(a) + j) | a \in A, j \in J\}$$

called the amalgamation of A with B along J with respect to f which is a generalization of the amalgamated duplication of a ring along an ideal (See [3, 4, 5] for more details). Some classical constructions such as Nagata's idealization, the A + xB[x]construction, the A + xB[[x]] construction, and the D + M construction can be considered as special cases of the amalgamation, see [3] for more details.

For a proper ideal I of a ring R, a comaximal factorization is a product $I = I_1I_2...I_n$ of proper ideals with $I_i + I_j = R$ for $i \neq j$. A proper ideal I is called pseudo-irreducible if it has no comaximal factorizations except for I = I. If the factors of a comaximal factorization $I = I_1I_2...I_n$ are pseudo-irreducible, then the comaximal factorization $I = I_1I_2...I_n$ is called *complete*. McAdam and Swan [9, Section 5] began the study of comaximal factorization and Juett [8] expanded the comaximal factorization to ideal systems. In [7], the authors showed that the complete comaximal factorization for every proper ideal of a ring R exists if and only if R is J-Noetherian.

The rest of this paper is organized in three sections. Some preliminaries on pseudo-irreducible ideals and the max-spectrum are given in Section 2. In Section 3, we give a characterization for the amalgamated algebra along an ideal $A \bowtie^f J$ to be *J*-Noetherian. In Section 4, we give a characterization for pseudo-irreducible ideals of $A \bowtie^f J$, in special cases.

2. Preliminaries on Pseudo-irreducible Ideals and Max-Spectrum

Recall that a ring R is called *indecomposable* if it cannot be written as a direct product of two nonzero rings or, equivalently, if it has no nontrivial idempotents.

Definition 2.1. An ideal I of a ring R is called *pseudo-irreducible* if R/I is indecomposable.

In the following proposition we list some of the main properties of pseudoirreducible ideals, see [6, 7, 9] for details and proofs.

Proposition 2.2. For an ideal I of R, the following statements hold.

- (1) I is a pseudo-irreducible ideal of R if and only if for all $r \in R$, $r(r-1) \in I \Rightarrow (r \in I \text{ or } r-1 \in I)$ if and only if for all ideals I_1 and I_2 of R, $(I = I_1I_2$ and $I_1 + I_2 = R) \Rightarrow (I_1 = R \text{ or } I_2 = R)$.
- (2) I is a pseudo-irreducible ideal of R if and only if \sqrt{I} is a pseudo-irreducible ideal of R. In particular, every primary ideal is pseudo-irreducible.
- (3) If I is a pseudo-irreducible ideal of R and J is an ideal of R such that $\sqrt{J} = \sqrt{I}$, then J is also a pseudo-irreducible ideal of R. In particular, any ideal that is between I and \sqrt{I} is a pseudo-irreducible ideal.
- (4) Every power of a prime ideal is a pseudo-irreducible ideal.
- (5) For any two ideals $I \subseteq J$ of R, J/I is a pseudo-irreducible ideal of R/I if and only if J is a pseudo-irreducible ideal of R.

Definition 2.3. A comaximal factorization of a proper ideal I of R is a product $I = \prod_{i=1}^{n} I_i$ of proper ideals with $I_i + I_j = R$ for $i \neq j$. A comaximal factorization is complete if its factors are pseudo-irreducible.

Theorem 2.4 (Uniqueness Theorem). [9, Theorem 5.1] If I has a complete comaximal factorization, it is unique.

For a ring R, the Zariski topology on $\operatorname{Spec}(R)$ is the topology obtained by taking the collection of sets of the form $\mathcal{U}_R(I) := \{P \in \operatorname{Spec}(R) \mid I \not\subseteq P\}$ (resp. $\mathcal{V}_R(I) := \{P \in \operatorname{Spec}(R) \mid I \subseteq P\}$), for every ideal I of R, as the open (resp. closed) sets. When considered as a subspace of $\operatorname{Spec}(R)$, $\operatorname{Max}(R)$ is called max - spectrum of R. So, its open and closed subsets are $U_R(I) := \mathcal{U}_R(I) \cap \operatorname{Max}(R) = \{\mathfrak{m} \in \operatorname{Max}(R) \mid I \not\subseteq \mathfrak{m}\}$ and $V_R(I) := \mathcal{V}_R(I) \cap \operatorname{Max}(R) = \{\mathfrak{m} \in \operatorname{Max}(R) \mid I \subseteq \mathfrak{m}\}$, respectively.

A topological space X is called *Noetherian* if every nonempty set of closed subsets of X, ordered by inclusion, has a minimal element. See [1, Chapter II, Section 4] for more details. An ideal I of R is called a *J*-radical ideal, if it is the intersection of all maximal ideals containing it. Clearly, *J*-radical ideals of R correspond to closed subsets of Max(R). Recall that a ring R is called *J*-Noetherian if it satisfies the ascending chain condition on *J*-radical ideals.

In the rest of this paper, we will frequently use the following theorem, which is the main result of [7].

Theorem 2.5. [7, Theorem 2.6] Let R be a ring. The following are equivalent:

(1) Every ideal of R has a complete comaximal factorization.

E. ROSTAMI

- (2) For every subset $\{\mathfrak{m}_{\alpha}\}_{\alpha \in \Lambda}$ of $\operatorname{Max}(R)$, and for all but finitely many $\beta \in \Lambda$, $\bigcap_{\beta \neq \alpha \in \Lambda} \mathfrak{m}_{\alpha} \subseteq \mathfrak{m}_{\beta}$.
- (3) For every infinite subset $\{\mathfrak{m}_{\alpha}\}_{\alpha\in\Lambda}$ of $\operatorname{Max}(R)$, there exists some $\beta\in\Lambda$ such that $\bigcap_{\beta\neq\alpha\in\Lambda}\mathfrak{m}_{\alpha}\subseteq\mathfrak{m}_{\beta}$.
- (4) Max(R) is a Noetherian space, i.e., R is J-Noetherian.

3. When $A \bowtie^f J$ is *J*-Noetherian

In this section, we give a characterization for the amalgamation of A with B along J with respect to f to be J-Noetherian. We begin with a result about the space of maximal ideals of the ring $A \bowtie^f J$.

Proposition 3.1. [2, Corollary 2.5 and Corollary 2.7] Let $f : A \to B$ be a ring homomorphism and J an ideal of B. For the subring $A \bowtie^f J := \{(a, f(a) + j) | a \in A, j \in J\}$ of the ring $A \times B$ and for all $\mathfrak{m} \in Max(A)$ and $Q \in Max(B)$, set

$$\mathfrak{m}'^{f} := \mathfrak{m} \bowtie^{f} J = \{ (p, f(p) + j) \mid p \in \mathfrak{m}, j \in J \},\$$

$$\overline{Q}' := \{ (a, f(a) + j) \mid a \in A, j \in J, f(a) + j \in Q \}.$$

Then, we have the following statements:

- (1) \mathfrak{m}'^f and \overline{Q}' are maximal ideals of $A \bowtie^f J$ for all $\mathfrak{m} \in \operatorname{Max}(A)$ and $Q \in U_B(J) = \operatorname{Max}(B) \setminus V_B(J)$.
- $(2) \operatorname{Max}(A \bowtie^{f} J) = \{ \mathfrak{m}'^{f} \mid \mathfrak{m} \in \operatorname{Max}(A) \} \cup \{ \overline{Q}' \mid Q \in \operatorname{Max}(B) \text{ and } J \not\subseteq Q \}.$
- (3) The map $Q \mapsto \overline{Q}'$ establishes a homeomorphism of $U_B(J) = \operatorname{Max}(B) \setminus V_B(J)$ onto $U_{A \bowtie^f J}(\{0\} \times J) = \operatorname{Max}(A \bowtie^f J) \setminus V_{A \bowtie^f J}(\{0\} \times J).$

Proposition 3.2. Let X be a topological space and $Y_1, Y_2, ..., Y_n$ be n subsets of X such that $X = \bigcup_{i=1}^n Y_i$. Then $Y_1, Y_2, ..., Y_n$ are Noetherian subspaces of X if and only if X is Noetherian. In particular, with the notation of Proposition 3.1, $A \bowtie^f J$ is J-Noetherian if and only if A is J-Noetherian and $U_B(J) = \{Q \in \operatorname{Max}(B) \mid J \not\subseteq Q\}$ is a Noetherian subspace of $\operatorname{Max}(B)$.

Proof. By [2, Corollary 2.5], Proposition 3.1, and Theorem 2.5.

Corollary 3.3. With the notation of Proposition 3.1, if $J \subseteq J(B)$, where J(B) is the Jacobson radical of B, then $A \bowtie^f J$ is J-Noetherian if and only if A is J-Noetherian.

16

Proof. By Proposition 3.1 and Proposition 3.2.

Corollary 3.4. With the notation of Proposition 3.1, if $V_B(J)$ is a Noetherian subspace of Max(B) (e.g., $|V_B(J)| < \infty$), then $A \bowtie^f J$ is J-Noetherian if and only if A and B are J-Noetherian.

Proof. Since $Max(B) = V_B(J) \cup U_B(J)$, the corollary is obtained from Proposition 3.5 and Proposition 3.2.

Proposition 3.5. With the notation of Proposition 3.1, if A and B are J-Noetherian, then $A \bowtie^f J$ is J-Noetherian.

Proof. By Proposition 3.2.

The converse of Proposition 3.5 is not true in general. See the following example.

Example 3.6. For a ring extension $A \subseteq B$, assume that x is an indeterminate over B. By [3, Example 2.5], the subring $A + xB[[x]] = \{f(x) \in B[[x]] \mid f(0) \in A\}$ of the ring of power series B[[x]] is isomorphic to $A \bowtie^{i_1} J_1$, where $i_1 : A \hookrightarrow B[[x]]$ is the natural embedding and $J_1 := xB[[x]]$. By Corollary 3.3, A is J-Noetherian if and only if $A \bowtie^{i_1} J_1$ is J-Noetherian. As special case, assume that B is a ring such that Max(B) is not Noetherian (e.g., an almost Dedekind domain that is not a Dedekind domain, a polynomial ring with infinitely many variables) and A is the prime subring of B. Since A is Noetherian, it is J-Noetherian. Thus, $A \bowtie^{i_1} J_1$ is J-Noetherian.

Lemma 3.7. Let R be a commutative ring. Then Max(R) is homeomorphic to the subspace $\mathbf{A}_r := \{ \mathfrak{m} + (x - r)R[x] \mid \mathfrak{m} \in Max(R) \}$ of Max(R[x]), where $r \in R$.

Proof. Define $\varphi : \operatorname{Max}(R) \to \mathbf{A}_r$ by

$$\varphi(\mathfrak{m}) = \mathfrak{m} + (x - r)R[x].$$

Clearly φ is well-defined and bijective. Now let C be an arbitrary closed subset of \mathbf{A}_r . Thus, there exists a subset $\{f_i\}_{i\in I}$ of R[x] such that $C = V_{R[x]}(\langle f_i \rangle_{i\in I}) \cap \mathbf{A}_r$. If $\mathfrak{m} + (x - r)R[x] \in V_{R[x]}(\langle f_i \rangle_{i\in I}) \cap \mathbf{A}_r$, then $f_i \in \mathfrak{m} + (x - r)R[x]$ for all $i \in I$. Hence, $f_i(r) \in \mathfrak{m}$ for all $i \in I$. Now if $\mathfrak{n} \in Max(R)$ such that $f_i(r) \in \mathfrak{n}$ for all $i \in I$, then it is easily seen that $\mathbf{n} + (x - r)R[x] \in V_{R[x]}(\langle f_i \rangle_{i \in I}) \cap \mathbf{A}_r$. Hence, $\varphi^{-1}(V_{R[x]}(\langle f_i \rangle_{i \in I}) \cap \mathbf{A}_r) = (V_R(\langle f_i(r) \rangle_{i \in I}))$. Therefore, ϕ is continuous.

Now let C' be an arbitrary closed subset of $\operatorname{Max}(R)$. Thus, there exists a subset $\{a_j\}_{j\in J}$ of R such that $C' = V_R(\langle a_j \rangle_{j\in J})$. For each $i \in J$, set $f_j(x) := a_j + x - r$. It is clearly that $\mathfrak{m} \in C' = V_R(\langle a_j \rangle_{j\in J})$ if and only if $\mathfrak{m} + (x-r)R[x] \in V_{R[x]}(\langle f_i \rangle_{i\in I}) \cap \mathbf{A}_r$. It follows that $\varphi(C') = \varphi(V_R(\langle a_j \rangle_{j\in J}) = V_{R[x]}(\langle f_j \rangle_{i\in I}) \cap \mathbf{A}_r$. Therefore, φ is a closed mapping and hence ϕ is a homeomorphism.

For a ring extension $A \subseteq B$, assume that x is an indeterminate over B. By [3, Example 2.5], the subring $A + xB[x] = \{f(x) \in B[x] \mid f(0) \in A\}$ of the polynomial ring B[x] is isomorphic to $A \bowtie^{i_2} J_2$, where $i_2 : A \hookrightarrow B[x]$ is the natural embedding and $J_2 := xB[x]$. In the following proposition we give a necessary and sufficient condition for the ring $A \bowtie^{i_2} J_2$ to be J-Noetherian.

Proposition 3.8. Let $A \subseteq B$ be a ring extension and x an indeterminate over B. Then the ring $A \bowtie^{i_2} J_2 \cong A + xB[x]$ is J-Noetherian if and only if A and B[x] are J-Noetherian.

Proof. (\Rightarrow). Assume that $A \Join^{i_2} J_2 \cong A + xB[x]$ is J-Noetherian. By Proposition 3.2, A is J-Noetherian and $U_{B[x]}(xB[x])$ is a Noetherian space. By Lemma 3.7, Max(B) is homeomorphic to the subspace $\{\mathfrak{m} + (x-1)B[x] \mid \mathfrak{m} \in Max(B)\}$ of Max(B[x]). Now since $\{\mathfrak{m} + (x-1)B[x] \mid \mathfrak{m} \in Max(B)\} \subseteq U_{B[x]}(xB[x])$, Max(B) is a Noetherian space. Now since $V_{B[x]}(xB[x])$ is homeomorphic to Max(B), $V_{B[x]}(xB[x])$ is Noetherian and hence Max(B[x]) = $V_{B[x]}(xB[x]) \cup U_{B[x]}(xB[x])$ is a Noetherian space by Proposition 3.2. Thus, B[x] is J-Noetherian.

(\Leftarrow). By Proposition 3.5.

Proposition 3.9. Let $A \subseteq B$ be a ring extension and x an indeterminate over B. Then the ring $A \bowtie^{i_2} J_2 \cong A + xB[x]$ is J-Noetherian if and only if A is J-Noetherian and B satisfies the ascending chain condition on radical ideals.

Proof. By Proposition 3.8 and [6, Theorem 4.4].

Remark 3.10. For a ring extension $A \subseteq B$ assume that x is an indeterminate over B. If A + xB[x] is J-Noetherian, then A + xB[[x]] is J-Noetherian, but the converse is not true in general.

18

Example 3.11. Let $D \subseteq T$ be a ring extension and J an ideal of T such that $J \cap D = \{0\}$. Then the ring $D + J := \{x + j \mid x \in D, j \in J\}$ is canonically isomorphic to $D \bowtie^i J$, where $i : D \hookrightarrow T$ is the natural embedding, see [3, Example 2.5]. By Corollary 3.4, if $V_T(J)$ is finite, then D + J is J-Noetherian if and only if D and T are J-Noetherian. In particular, let $D \subseteq T$ be a ring extension and \mathfrak{M} a maximal ideal of T such that $\mathfrak{M} \cap D = \{0\}$. Then $D + \mathfrak{M}$ is J-Noetherian ring if and only if D and T are J-Noetherian.

Lemma 3.12. Let $R \subseteq S$ be a ring extension and S be J-Noetherian. Then R is J-Noetherian if and only if there exists a ring homomorphism $g : A \to S$ and an ideal K of S such that A is J-Noetherian and R = g(A) + K.

Proof. (\Rightarrow). Let R be J-Noetherian. Set A = R, $K = \{0\}$ and assume that g is the natural embedding.

 (\Leftarrow) . Assume that there exists a ring homomorphism $g: A \to S$ and an ideal K of S such that A is J-Noetherian and R = g(A) + K. Thus, by [3, Proposition 5.1 (3)], $R = g(A) + K \cong \frac{A \bowtie^g K}{g^{-1}(K) \times \{0\}}$. Now since $A \bowtie^g K$ is J-Noetherian, R is J-Noetherian.

Lemma 3.13. Let R and S be two rings. Then R and S are J-Noetherian if and only if $R \times S$ is J-Noetherian.

Proof. Obviously.

Now we are in a position to give a necessary and sufficient condition for the ring $A \bowtie^f J$ to be J-Noetherian.

Proposition 3.14. With the notation of Proposition 3.1, $A \bowtie^f J$ is J-Noetherian if and only if A and f(A) + J are J-Noetherian.

Proof. (\Rightarrow). Let $A \bowtie^f J$ be *J*-Noetherian. By [3, Proposition 5.1], $A \cong \frac{A \bowtie^f J}{\{0\} \times J}$ and $f(A) + J \cong \frac{A \bowtie^f J}{f^{-1}(J) \times \{0\}}$. Thus, *A* and f(A) + J are *J*-Noetherian.

(\Leftarrow). Let A and f(A) + J be J-Noetherian. Thus, the ring $A \times (f(A) + J)$ is J-Noetherian. Define $g: A \to A \times (f(A) + J)$ by

$$g(a) := (a, f(a)).$$

Clearly g is a ring homomorphism. Set $K := \{0\} \times J$. Hence, by Lemma 3.12, $g(A) + K = \{(a, f(a) + j) \mid a \in A \text{ and } j \in J\} = A \bowtie^f J$ is J-Noetherian.

Example 3.15. Let A be a ring which is not J-Noetherian (e.g., an almost Dedekind domain that is not a Dedekind domain, a polynomial ring with infinitely many variables) and let \mathfrak{m} be a maximal ideal of A. Then for the localization map $f : A \to A_{\mathfrak{m}}$ and $J := \mathfrak{m}A_{\mathfrak{m}}$, we have $f(A) + J = A_{\mathfrak{m}}$ which is J-Noetherian, but A and $A \bowtie^{f} J$ are not J-Noetherian.

Corollary 3.16. With the notation of Proposition 3.1, if f is surjective, then $A \bowtie^f J$ is J-Noetherian if and only if A and B are J-Noetherian.

Corollary 3.17. With the notation of Proposition 3.1, if $J \subseteq f(A)$, then $A \bowtie^f J$ is J-Noetherian if and only if A is J-Noetherian.

Proof. Since $J \subseteq f(A)$, we have f(A) + J = f(A), and so f(A) + J is a quotient of A. Hence, the result follows from Proposition 3.14.

Proposition 3.18. Let $f : A \to B$ be a ring homomorphism and J_1 and J_2 be two comaximal ideals of B. Then $A \bowtie^f J_1$ and $A \bowtie^f J_2$ are J-Noetherian if and only if A and B are J-Noetherian.

Proof. Since J_1 and J_2 are comaximal ideals of B, we have $Max(B) = U_B(J_1) \cup U_B(J_2)$. Hence, the proof completes by Theorem 2.5 and Proposition 3.2.

4. Pseudo-irreducible ideals of $A \bowtie^f J$

In this section, we give a characterization for pseudo-irreducible ideals of $A \bowtie^f J$, in special cases.

Remark 4.1. With the notation of Proposition 3.1, we have the canonical isomorphism $A \cong \frac{A \bowtie^f J}{\{0\} \times J}$. Thus, every ideal of $A \bowtie^f J$ containing $\{0\} \times J$ is of the form $I \bowtie^f J := \{(i, f(i) + j) \mid i \in I, j \in J\}$ for some ideal I of A. Also, we have the following canonical isomorphism:

$$\frac{A \bowtie^f J}{I \bowtie^f J} \cong \frac{A}{I}.$$

Hence, an arbitrary ideal $I \bowtie^f J$ of $A \bowtie^f J$ containing $\{0\} \times J$ is pseudo-irreducible if and only if I is a pseudo-irreducible ideal of A.

With the notation of Proposition 3.1, for an ideal K of f(A) + J, set:

$$\overline{K}^{f} := \{ (a, f(a) + j) \mid f(a) + j \in K \}.$$

Clearly, \overline{K}^f is an ideal of $A \bowtie^f J$.

Proposition 4.2. With the notation of Proposition 3.1, let T be an ideal of $A \bowtie^f J$ such that $f^{-1}(J) \times \{0\} \subseteq T$. Then $T = \overline{T_{f(A)+J}}^f$, where $T_{f(A)+J}$ is the ideal $\{f(a) + j \mid (a, f(a) + j) \in T\}$ of f(A) + J. Furthermore, T is a pseudo-irreducible ideal of $A \bowtie^f J$ if and only if $T_{f(A)+J}$ is a pseudo-irreducible ideal of f(A) + J.

Proof. Let T be an ideal of $A \bowtie^f J$. Then, clearly $T_{f(A)+J}$ is an ideal of f(A) + J. Let $(a, f(a) + j) \in T$. Then $f(a) + j \in T_{f(A)+J}$, and so $(a, f(a) + j) \in \overline{T_{f(A)+J}}^f$. Conversely, let $(a, f(a) + j) \in \overline{T_{f(A)+J}}^f$. Thus, $f(a) + j \in T_{f(A)+J}$. Hence, there exist $a' \in A$ and $j' \in J$ such that $(a', f(a') + j') \in T$ and f(a') + j' = f(a) + j. Thus, $f(a - a') \in J$ and so $a - a' \in f^{-1}(J)$. Since $f^{-1}(J) \times \{0\} \subseteq T$, we have $(a - a', 0) \in T$. Now since (a', f(a') + j') is also in T, we have $(a, f(a') + j') \in T$. Therefore, $(a, f(a) + j) \in T$. Thus, $T = \overline{T_{f(A)+J}}^f$.

Now let T be a pseudo-irreducible ideal of $A \bowtie^f J$, and $(f(a)+j)(f(a)+j-1) \in T_{f(A)+J}$ for some $f(a)+j \in f(A)+J$. Thus, $(a, f(a)+j)((a, f(a)+j)-(1,1)) \in T$. Since T is a pseudo-irreducible ideal of $A \bowtie^f J$, we have $(a, f(a)+j) \in T$ or $((a, f(a)+j)-(1,1)) \in T$. Now since $T = \overline{T_{f(A)+J}}^f$, we have $f(a)+j \in T_{f(A)+J}$ or $f(a)+j-1 \in T_{f(A)+J}$. It follows that $T_{f(A)+J}$ is a pseudo-irreducible ideal of f(A)+J. Conversely, assume that $T_{f(A)+J}$ is a pseudo-irreducible ideal of f(A)+J and $(a, f(a)+j)((a, f(a)+j)-(1,1)) \in T$ for some $(a, f(a)+j)) \in A \bowtie^f J$. Thus, $(a(a-1), (f(a)+j)(f(a)+j-1)) \in T = \overline{T_{f(A)+J}}^f$. This implies that $(f(a)+j)(f(a)+j-1) \in T_{f(A)+J}$ and since $T_{f(A)+J}$ is a pseudo-irreducible ideal of f(A)+J. Therefore, $(a, f(a)+j) \in T$ or $((a, f(a)+j)-(1,1)) \in T$ and hence T is a pseudo-irreducible ideal of $a \bowtie^f J$.

Proposition 4.3. With the notation of Proposition 3.1 let $J \neq \{0\}$. Then $f^{-1}(J) = \{0\}$ if and only if every ideal of $A \bowtie^f J$ is of the form \overline{K}^f for some ideal K of f(A) + J. In particular, if $f^{-1}(J) = \{0\}$, then every pseudo-irreducible ideal of $A \bowtie^f J$ is of the form \overline{K}^f for some pseudo-irreducible ideal K of f(A) + J.

Proof. (\Rightarrow). Since $f^{-1}(J) = \{0\}$, for every ideal T of $A \bowtie^f J$, we have $f^{-1}(J) \times \{0\} \subseteq T$. Hence, Proposition 4.2 completes the proof.

(⇐). Assume that every ideal of $A \bowtie^f J$ is of the form \overline{K}^f for some ideal K of f(A) + J. Thus, for the ideal $\{(0,0)\}$ of $A \bowtie^f J$ there exists an ideal K of f(A) + J such that $\{(0,0)\} = \overline{K}^f = \{(a, f(a) + j) \mid f(a) + j \in K\}$. Hence, $f^{-1}(J) = \{0\}$.

Proposition 4.4. With the notation of Proposition 3.1, if $J \neq B$, then the ring $A \bowtie^f J$ is indecomposable, equivalently the ideal $\{(0,0)\}$ is pseudo-irreducible, if and only if A is indecomposable and the ideal J has no nonzero idempotents.

Proof. (\Rightarrow). By contrapositive. If *e* is a nontrivial ideampotent element of *A*, then (e, f(e)) is a nontrivial idempotent element of $A \bowtie^f J$ or if *j* is a nonzero idempotent element of *J*, then (0, j) is a nontrivial idempotent element of $A \bowtie^f J$.

(\Leftarrow). Suppose that A is indecomposable and the ideal J has no nonzero idempotents. If (a, f(a) + j) is an idempotent element of $A \bowtie^f J$, then we have

$$a^{2} = a$$
 and $(f(a) + j)^{2} = f(a) + j$.

Now since A is indecomposable, we have a = 0 or a = 1. If a = 0, then $j^2 = j$. Thus, j = 0. Hence, (a, f(a) + j) = (0, 0). If a = 1, then $(1 + j)^2 = 1 + j$. Thus, $j^2 = -j$. This implies that -j is an idempotent element of J. Thus j = 0. Hence, (a, f(a) + j) = (1, 1). Therefore, $A \bowtie^f J$ has no nontrivial idempotent elements and so $A \bowtie^f J$ is indecomposable.

Proposition 4.5. With the notation of Proposition 3.1, if the ideal J has a generating set consisting of idempotents, then every pseudo-irreducible ideal of $A \bowtie^f J$ is of the form $I \bowtie^f J$ for some pseudo-irreducible ideal I of A or \overline{K}^f for some pseudo-irreducible ideal K of f(A) + J.

Proof. By Remark 4.1 and Proposition 4.2, it is sufficient to show that for a pseudoirreducible ideal T of $A \bowtie^f J$, we have $\{0\} \times J \subseteq T$ or $f^{-1}(J) \times \{0\} \subseteq T$.

By assumption, there exists a subset $\{e_i\}_{i \in I}$ of idempotent elements of B such that $J = \langle e_i \rangle_{i \in I}$. Since for each $i \in I$, $(0, e_i) \in A \bowtie^f J$, we have $(0, e_i)((0, e_i) - (1, 1)) = (0, 0) \in T$. Now since T is a pseudo-irreducible ideal of $A \bowtie^f J$, we have $(0, e_i) \in T$ or $(0, e_i) - (1, 1) = (-1, e_i - 1) \in T$. If $(-1, e_i - 1) \in T$ for some $i \in I$, then $f^{-1}(J) \times \{0\} = (-1, e_i - 1)(f^{-1}(J) \times \{0\}) \subseteq T$. Let us assume $(0, e_i) \in T$

for each $i \in I$. Now let $(0, j) \in \{0\} \times J$. Since $j \in J$, j has an expression of the form $j = \sum_{i \in I} b_i e_i$, where $b_i \in B$ and almost all $b_i = 0$. Since $e_i \in J$, we have $(0, b_i e_i) \in A \Join^f J$ for each $i \in I$. Thus, $(0, j) = \sum_{i \in I} (0, b_i e_i) (0, e_i) \in T$. Therefore, $\{0\} \times J \subseteq T$, which completes the proof. \Box

In Proposition 4.5, the assumption that J has a generating set consisting of idempotents is necessary.

Example 4.6. Let $A := \mathbb{Z}_4$ and $B := \mathbb{Z}_4[x]$. Since $\mathfrak{p} := \langle \overline{2} \rangle$ is a maximal ideal of A, by Proposition 3.1, $\mathfrak{p} \bowtie^f J$ is a maximal ideal of $A \bowtie^f J$, where J is the ideal $\langle \overline{2}, x \rangle$ of B and $f : \mathbb{Z}_4 \hookrightarrow \mathbb{Z}_4[x]$ is the natural embedding. Thus, by Proposition 2.2(4), $(\mathfrak{p} \bowtie^f J)^2$ is a pseudo-irreducible ideal of $A \bowtie^f J$, but $\{0\} \times J \not\subseteq (\mathfrak{p} \bowtie^f J)^2$ and $f^{-1}(J) \times \{0\} \not\subseteq (\mathfrak{p} \bowtie^f J)^2$. It follows that $(\mathfrak{p} \bowtie^f J)^2$ is not of the form $I \bowtie^f J$ for some pseudo-irreducible ideal I of A or \overline{K}^f for some pseudo-irreducible ideal K of f(A) + J.

Remark 4.7. It is easily seen that if an ideal I of a ring R can be generated by a set of idempotents, then every element of I is a multiple of an idempotent of I.

Before proceeding, we need some notation. For an ideal I of a ring R let I' be the ideal of R generated by idempotent elements of I, that is, $I' = \langle \{e \in I \mid e^2 = e\} \rangle$.

Lemma 4.8. Let I be an ideal of R. Then if I is a pseudo-irreducible ideal of R, then I' is a pseudo-irreducible ideal of R.

Proof. Let $x^2 - x \in I'$ for some $x \in R$. Thus, $x^2 - x \in I$. Since *I* is a pseudoirreducible ideal *R*, we have $x \in I$ or $x - 1 \in I$. Suppose that $x \in I$. Now since $x^2 - x \in I'$, by Remark 4.7, there exists $e^2 = e \in I'$ such that $x^2 - x = re$ for some $r \in R$. Thus, $x^2 - x = (x^2 - x)e$. Hence, $(1 - e)x^2 = (1 - e)x$. Thus, $((1 - e)x)^2 = (1 - e)^2x^2 = (1 - e)x^2 = (1 - e)x$. This shows that (1 - e)x is an idempotent in *I*, hence $(1 - e)x \in I'$. Now since $e \in I'$, we have $x \in I'$. A similar argument works when $x - 1 \in I$. Therefore, *I'* is a pseudo-irreducible ideal of *R*. □

Theorem 4.9. With the notation of Proposition 3.1, let $f^{-1}(J) \neq \{0\}$ and A be an indecomposable ring (e.g., domains and local rings). Then every pseudo-irreducible ideal of $A \bowtie^f J$ is of the form $I \bowtie^f J$ for some pseudo-irreducible ideal I of A or \overline{K}^f for some pseudo-irreducible ideal K of f(A) + J if and only if the ideal J is generated by idempotent elements.

Proof. (\Rightarrow). Since A is indecomposable, the ideal {0} of A is pseudo-irreducible. Thus, {0} $\bowtie^f J$ is a pseudo-irreducible ideal of $A \bowtie^f J$, and so ({0} $\bowtie^f J$)' is a pseudo-irreducible of $A \bowtie^f J$, by Lemma 4.8. By assumption, there are two cases:

Case1. There exists an ideal I of A such that $(\{0\} \bowtie^f J)' = I \bowtie^f J$. In this case, since A is indecomposable, we have $(\{0\} \bowtie^f J)' = \{0\} \times J'$. Hence, $I \bowtie^f J = \{0\} \times J'$, and so J = J'. Therefore, the ideal J is generated by its idempotent elements.

*Case*2. There exists an ideal K of f(A) + J such that $(\{0\} \bowtie^f J)' = \overline{K}^f$. In this case, since $f^{-1}(J) \times \{0\} \subseteq \overline{K}^f$, we have $f^{-1}(J) = \{0\}$, a contradiction.

 (\Leftarrow) . By Proposition 4.5.

In Theorem 4.9, the assumption that $f^{-1}(J) \neq \{0\}$ is necessary.

Example 4.10. Let x be an indeterminate over the ring of integers \mathbb{Z} . Set $A := \mathbb{Z}$, $B := \mathbb{Z}[x]$ and J := xB. Then, for the canonical embedding $i : A \hookrightarrow B$ we have $i^{-1}(J) = \{0\}$. Thus, by Proposition 4.3, every pseudo-irreducible ideal of $A \bowtie^i J$ is of the form \overline{K}^i for some pseudo-irreducible ideal K of i(A) + J = A + J, but J is not generated by idempotents.

References

- [1] Bourbaki, N. (1985). Commutative Algebra, Chapters 1-7. Springer-Verlag, New York.
- [2] D'Anna, M. Finocchiaro, C. A. Fontana, M. (2016). New Algebraic Properties of an Amalgamated Algebra Along an Ideal. Comm. Algebra 44(5):1836-1851.
- [3] D'Anna, M., Finocchiaro, C. A., Fontana, M. (2009). Amalgamated algebras along an ideal. In: Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008. Berlin: W. de Gruyter Publisher.
- [4] D'Anna, M., Fontana, M. (2007). An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6:443-459.
- [5] D'Anna, M., Fontana, M. (2007). The amalgamated duplication of a ring along a multiplicativecanonical ideal. Arkiv Mat. 45:241-252.
- [6] Hedayat, S. Rostami, E. (2017). Decomposition of ideals into pseudo-irreducible ideals. Comm. Algebra 45(4): 1711–1718.
- [7] Hedayat, S. Rostami, E. (2018). A characterization of commutative rings whose maximal ideal spectrum is Noetheria. J. Algebra Appl. 0, 1850003 [8 pages] DOI: http://dx.doi.org/10.1142/S0219498818500032.
- [8] Juett, J. R. (2012). Generalized comaximal factorization of ideals. J. Algebra 352:141-166.
- [9] McAdam, S., Swan, R. G. (2004). Unique comaximal factorization. J. Algebra 276:180-192.