DECOMPOSITION OF IDEALS INTO PSEUDO-IRREDUCIBLE IDEALS IN AMALGAMATED ALGEBRA ALONG AN IDEAL

ESMAEIL ROSTAMI
DEPARTMENT OF PURE MATHEMATICS, MAHANI MATHEMATICAL RESEARCH CENTER, FACULTY OF MATHEMATICS AND COMPUTER, SHAHID BAHONAR UNIVERSITY OF KERMAN, KERMAN, IRAN E-MAIL: E_ROSTAMI@UK.AC.IR

(Received: 17 August 2017, Accepted: 26 September 2017)

Abstract

Let $f: A \rightarrow B$ be a ring homomorphism and J an ideal of B. In this paper, we give a necessary and sufficient condition for the amalgamated algebra along an ideal $A \bowtie^{f} J$ to be J-Noetherian. Then we give a characterization for pseudo-irreducible ideals of $A \bowtie^{f} J$, in special cases.

AMS Classification: 13A15, 13B99.
Keywords: Amalgamated algebra along an ideal, J-Noetherian, Complete comaximal factorization, Pseudo-irreducible ideal.

1. Introduction

Throughout this paper all rings will be commutative with identity. We denote by $\operatorname{Spec}(R)$ and $\operatorname{Max}(R)$ the set of prime ideals and the set of maximal ideals of R, respectively.

```
JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER
VOL. 6, NUMBERS 1-2 (2017) 13-24.
DOI: 10.22103/JMMRC.2017.10782.1046
(c)MAHANI MATHEMATICAL RESEARCH CENTER

Let \(A\) and \(B\) be two rings and let \(J\) be an ideal of \(B\). Then, for a ring homomorphism \(f: A \rightarrow B\) consider the following subring of \(A \times B\) :
\[
A \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in A, j \in J\}
\]
called the amalgamation of \(A\) with \(B\) along \(J\) with respect to \(f\) which is a generalization of the amalgamated duplication of a ring along an ideal (See [3, 4, 5] for more details). Some classical constructions such as Nagata's idealization, the \(A+x B[x]\) construction, the \(A+x B[[x]]\) construction, and the \(D+M\) construction can be considered as special cases of the amalgamation, see [3] for more details.

For a proper ideal \(I\) of a ring \(R\), a comaximal factorization is a product \(I=\) \(I_{1} I_{2} \ldots I_{n}\) of proper ideals with \(I_{i}+I_{j}=R\) for \(i \neq j\). A proper ideal \(I\) is called pseudo-irreducible if it has no comaximal factorizations except for \(I=I\). If the factors of a comaximal factorization \(I=I_{1} I_{2} \ldots I_{n}\) are pseudo-irreducible, then the comaximal factorization \(I=I_{1} I_{2} \ldots I_{n}\) is called complete. McAdam and Swan [9, Section 5] began the study of comaximal factorization and Juett [8] expanded the comaximal factorization to ideal systems. In [7], the authors showed that the complete comaximal factorization for every proper ideal of a ring \(R\) exists if and only if \(R\) is \(J\)-Noetherian.

The rest of this paper is organized in three sections. Some preliminaries on pseudo-irreducible ideals and the max-spectrum are given in Section 2. In Section 3, we give a characterization for the amalgamated algebra along an ideal \(A \bowtie^{f} J\) to be \(J\)-Noetherian. In Section 4, we give a characterization for pseudo-irreducible ideals of \(A \bowtie^{f} J\), in special cases.

\section*{2. Preliminaries on Pseudo-irreducible Ideals and Max-Spectrum}

Recall that a ring \(R\) is called indecomposable if it cannot be written as a direct product of two nonzero rings or, equivalently, if it has no nontrivial idempotents.

Definition 2.1. An ideal \(I\) of a ring \(R\) is called pseudo-irreducible if \(R / I\) is indecomposable.

In the following proposition we list some of the main properties of pseudoirreducible ideals, see \([6,7,9]\) for details and proofs.

Proposition 2.2. For an ideal \(I\) of \(R\), the following statements hold.
(1) \(I\) is a pseudo-irreducible ideal of \(R\) if and only if for all \(r \in R, r(r-1) \in\) \(I \Rightarrow(r \in I\) or \(r-1 \in I)\) if and only if for all ideals \(I_{1}\) and \(I_{2}\) of \(R,\left(I=I_{1} I_{2}\right.\) and \(\left.I_{1}+I_{2}=R\right) \Rightarrow\left(I_{1}=R\right.\) or \(\left.I_{2}=R\right)\).
(2) \(I\) is a pseudo-irreducible ideal of \(R\) if and only if \(\sqrt{I}\) is a pseudo-irreducible ideal of \(R\). In particular, every primary ideal is pseudo-irreducible.
(3) If \(I\) is a pseudo-irreducible ideal of \(R\) and \(J\) is an ideal of \(R\) such that \(\sqrt{J}=\sqrt{I}\), then \(J\) is also a pseudo-irreducible ideal of \(R\). In particular, any ideal that is between \(I\) and \(\sqrt{I}\) is a pseudo-irreducible ideal.
(4) Every power of a prime ideal is a pseudo-irreducible ideal.
(5) For any two ideals \(I \subseteq J\) of \(R, J / I\) is a pseudo-irreducible ideal of \(R / I\) if and only if \(J\) is a pseudo-irreducible ideal of \(R\).

Definition 2.3. A comaximal factorization of a proper ideal \(I\) of \(R\) is a product \(I=\prod_{i=1}^{n} I_{i}\) of proper ideals with \(I_{i}+I_{j}=R\) for \(i \neq j\). A comaximal factorization is complete if its factors are pseudo-irreducible.

Theorem 2.4 (Uniqueness Theorem). [9, Theorem 5.1] If I has a complete comaximal factorization, it is unique.

For a ring \(R\), the Zariski topology on \(\operatorname{Spec}(R)\) is the topology obtained by taking the collection of sets of the form \(\mathcal{U}_{R}(I):=\{P \in \operatorname{Spec}(R) \mid I \nsubseteq P\}\) (resp. \(\mathcal{V}_{R}(I):=\) \(\{P \in \operatorname{Spec}(R) \mid I \subseteq P\}\) ), for every ideal \(I\) of \(R\), as the open (resp. closed) sets. When considered as a subspace of \(\operatorname{Spec}(R), \operatorname{Max}(R)\) is called max - spectrum of \(R\). So, its open and closed subsets are \(U_{R}(I):=\mathcal{U}_{R}(I) \cap \operatorname{Max}(R)=\{\mathfrak{m} \in \operatorname{Max}(R) \mid\) \(I \nsubseteq \mathfrak{m}\}\) and \(V_{R}(I):=\mathcal{V}_{R}(I) \cap \operatorname{Max}(R)=\{\mathfrak{m} \in \operatorname{Max}(R) \mid I \subseteq \mathfrak{m}\}\), respectively

A topological space \(X\) is called Noetherian if every nonempty set of closed subsets of \(X\), ordered by inclusion, has a minimal element. See [1, Chapter II, Section 4] for more details. An ideal \(I\) of \(R\) is called a \(J\)-radical ideal, if it is the intersection of all maximal ideals containing it. Clearly, \(J\)-radical ideals of \(R\) correspond to closed subsets of \(\operatorname{Max}(R)\). Recall that a ring \(R\) is called \(J\)-Noetherian if it satisfies the ascending chain condition on \(J\)-radical ideals.

In the rest of this paper, we will frequently use the following theorem, which is the main result of [7].

Theorem 2.5. [7, Theorem 2.6] Let \(R\) be a ring. The following are equivalent:
(1) Every ideal of \(R\) has a complete comaximal factorization.
(2) For every subset \(\left\{\mathfrak{m}_{\alpha}\right\}_{\alpha \in \Lambda}\) of \(\operatorname{Max}(R)\), and for all but finitely many \(\beta \in \Lambda\), \(\bigcap_{\beta \neq \alpha \in \Lambda} \mathfrak{m}_{\alpha} \subseteq \mathfrak{m}_{\beta}\).
(3) For every infinite subset \(\left\{\mathfrak{m}_{\alpha}\right\}_{\alpha \in \Lambda}\) of \(\operatorname{Max}(R)\), there exists some \(\beta \in \Lambda\) such that \(\bigcap_{\beta \neq \alpha \in \Lambda} \mathfrak{m}_{\alpha} \subseteq \mathfrak{m}_{\beta}\).
(4) \(\operatorname{Max}(R)\) is a Noetherian space, i.e., \(R\) is J-Noetherian.

\section*{3. When \(A \bowtie^{f} J\) is \(J\)-Noetherian}

In this section, we give a characterization for the amalgamation of \(A\) with \(B\) along \(J\) with respect to \(f\) to be \(J\)-Noetherian. We begin with a result about the space of maximal ideals of the ring \(A \bowtie^{f} J\).

Proposition 3.1. [2, Corollary 2.5 and Corollary 2.7] Let \(f: A \rightarrow B\) be a ring homomorphism and \(J\) an ideal of \(B\). For the subring \(A \bowtie^{f} J:=\{(a, f(a)+j) \mid a \in\) \(A, j \in J\}\) of the ring \(A \times B\) and for all \(\mathfrak{m} \in \operatorname{Max}(A)\) and \(Q \in \operatorname{Max}(B)\), set
\[
\begin{aligned}
\mathfrak{m}^{\prime f} & :=\mathfrak{m} \bowtie^{f} J=\{(p, f(p)+j) \mid p \in \mathfrak{m}, j \in J\} \\
\bar{Q}^{\prime} & :=\{(a, f(a)+j) \mid a \in A, j \in J, f(a)+j \in Q\} .
\end{aligned}
\]

Then, we have the following statements:
(1) \(\mathfrak{m}^{\prime f}\) and \(\bar{Q}^{\prime}\) are maximal ideals of \(A \bowtie^{f} J\) for all \(\mathfrak{m} \in \operatorname{Max}(A)\) and \(Q \in\) \(U_{B}(J)=\operatorname{Max}(B) \backslash V_{B}(J)\).
(2) \(\operatorname{Max}\left(A \bowtie^{f} J\right)=\left\{\mathfrak{m}^{\prime f} \mid \mathfrak{m} \in \operatorname{Max}(A)\right\} \cup\left\{\bar{Q}^{\prime} \mid Q \in \operatorname{Max}(B)\right.\) and \(\left.J \nsubseteq Q\right\}\).
(3) The map \(Q \mapsto \bar{Q}^{\prime}\) establishes a homeomorphism of \(U_{B}(J)=\operatorname{Max}(B) \backslash V_{B}(J)\) onto \(U_{A \bowtie^{f} J}(\{0\} \times J)=\operatorname{Max}\left(A \bowtie^{f} J\right) \backslash V_{A \bowtie^{f} J}(\{0\} \times J)\).

Proposition 3.2. Let \(X\) be a topological space and \(Y_{1}, Y_{2}, \ldots, Y_{n}\) be \(n\) subsets of \(X\) such that \(X=\cup_{i=1}^{n} Y_{i}\). Then \(Y_{1}, Y_{2}, \ldots, Y_{n}\) are Noetherian subspaces of \(X\) if and only if \(X\) is Noetherian. In particular, with the notation of Proposition 3.1, \(A \bowtie^{f} J\) is \(J\)-Noetherian if and only if \(A\) is \(J\)-Noetherian and \(U_{B}(J)=\{Q \in \operatorname{Max}(B) \mid J \nsubseteq Q\}\) is a Noetherian subspace of \(\operatorname{Max}(B)\).

Proof. By [2, Corollary 2.5], Proposition 3.1, and Theorem 2.5.

Corollary 3.3. With the notation of Proposition 3.1, if \(J \subseteq J(B)\), where \(J(B)\) is the Jacobson radical of \(B\), then \(A \bowtie^{f} J\) is \(J\)-Noetherian if and only if \(A\) is \(J\)-Noetherian.

Proof. By Proposition 3.1 and Proposition 3.2.
Corollary 3.4. With the notation of Proposition 3.1, if \(V_{B}(J)\) is a Noetherian subspace of \(\operatorname{Max}(B)\) (e.g., \(\left.\left|V_{B}(J)\right|<\infty\right)\), then \(A \bowtie^{f} J\) is \(J\)-Noetherian if and only if \(A\) and \(B\) are \(J\)-Noetherian.

Proof. Since \(\operatorname{Max}(B)=V_{B}(J) \cup U_{B}(J)\), the corollary is obtained from Proposition 3.5 and Proposition 3.2.

Proposition 3.5. With the notation of Proposition 3.1, if \(A\) and \(B\) are \(J\)-Noetherian, then \(A \bowtie^{f} J\) is \(J\)-Noetherian.

Proof. By Proposition 3.2.

The converse of Proposition 3.5 is not true in general. See the following example.

Example 3.6. For a ring extension \(A \subseteq B\), assume that \(x\) is an indeterminate over \(B\). By [3, Example 2.5], the subring \(A+x B[[x]]=\{f(x) \in B[[x]] \mid f(0) \in A\}\) of the ring of power series \(B[[x]]\) is isomorphic to \(A \bowtie^{i_{1}} J_{1}\), where \(i_{1}: A \hookrightarrow B[[x]]\) is the natural embedding and \(J_{1}:=x B[[x]]\). By Corollary 3.3, \(A\) is \(J\)-Noetherian if and only if \(A \bowtie^{i_{1}} J_{1}\) is \(J\)-Noetherian. As special case, assume that \(B\) is a ring such that \(\operatorname{Max}(B)\) is not Noetherian (e.g., an almost Dedekind domain that is not a Dedekind domain, a polynomial ring with infinitely many variables) and \(A\) is the prime subring of \(B\). Since \(A\) is Noetherian, it is \(J\)-Noetherian. Thus, \(A \bowtie^{i_{1}} J_{1}\) is \(J\)-Noetherian, but \(B\) is not \(J\)-Noetherian.

Lemma 3.7. Let \(R\) be a commutative ring. Then \(\operatorname{Max}(R)\) is homeomorphic to the subspace \(\mathbf{A}_{r}:=\{\mathfrak{m}+(x-r) R[x] \mid \mathfrak{m} \in \operatorname{Max}(R)\}\) of \(\operatorname{Max}(R[x])\), where \(r \in R\).

Proof. Define \(\varphi: \operatorname{Max}(R) \rightarrow \mathbf{A}_{r}\) by
\[
\varphi(\mathfrak{m})=\mathfrak{m}+(x-r) R[x] .
\]

Clearly \(\varphi\) is well-defined and bijective. Now let \(C\) be an arbitrary closed subset of \(\mathbf{A}_{r}\). Thus, there exists a subset \(\left\{f_{i}\right\}_{i \in I}\) of \(R[x]\) such that \(C=V_{R[x]}\left(\left\langle f_{i}\right\rangle_{i \in I}\right) \cap \mathbf{A}_{r}\). If \(\mathfrak{m}+(x-r) R[x] \in V_{R[x]}\left(\left\langle f_{i}\right\rangle_{i \in I}\right) \cap \mathbf{A}_{r}\), then \(f_{i} \in \mathfrak{m}+(x-r) R[x]\) for all \(i \in I\). Hence, \(f_{i}(r) \in \mathfrak{m}\) for all \(i \in I\). Now if \(\mathfrak{n} \in \operatorname{Max}(R)\) such that \(f_{i}(r) \in \mathfrak{n}\) for all
\(i \in I\), then it is easily seen that \(\mathfrak{n}+(x-r) R[x] \in V_{R[x]}\left(\left\langle f_{i}\right\rangle_{i \in I}\right) \cap \mathbf{A}_{r}\). Hence, \(\varphi^{-1}\left(V_{R[x]}\left(\left\langle f_{i}\right\rangle_{i \in I}\right) \cap \mathbf{A}_{r}\right)=\left(V_{R}\left(\left\langle f_{i}(r)\right\rangle_{i \in I}\right)\right)\). Therefore, \(\phi\) is continuous.

Now let \(C^{\prime}\) be an arbitrary closed subset of \(\operatorname{Max}(R)\). Thus, there exists a subset \(\left\{a_{j}\right\}_{j \in J}\) of \(R\) such that \(C^{\prime}=V_{R}\left(\left\langle a_{j}\right\rangle_{j \in J}\right)\). For each \(i \in J\), set \(f_{j}(x):=a_{j}+x-r\). It is clearly that \(\mathfrak{m} \in C^{\prime}=V_{R}\left(\left\langle a_{j}\right\rangle_{j \in J}\right)\) if and only if \(\mathfrak{m}+(x-r) R[x] \in V_{R[x]}\left(\left\langle f_{i}\right\rangle_{i \in I}\right) \cap \mathbf{A}_{r}\). It follows that \(\varphi\left(C^{\prime}\right)=\varphi\left(V_{R}\left(\left\langle a_{j}\right\rangle_{j \in J}\right)=V_{R[x]}\left(\left\langle f_{j}\right\rangle_{i \in I}\right) \cap \mathbf{A}_{r}\right.\). Therefore, \(\varphi\) is a closed mapping and hence \(\phi\) is a homeomorphism.

For a ring extension \(A \subseteq B\), assume that \(x\) is an indeterminate over \(B\). By [3, Example 2.5], the subring \(A+x B[x]=\{f(x) \in B[x] \mid f(0) \in A\}\) of the polynomial ring \(B[x]\) is isomorphic to \(A \bowtie^{i_{2}} J_{2}\), where \(i_{2}: A \hookrightarrow B[x]\) is the natural embedding and \(J_{2}:=x B[x]\). In the following proposition we give a necessary and sufficient condition for the ring \(A \bowtie^{i_{2}} J_{2}\) to be \(J\)-Noetherian.

Proposition 3.8. Let \(A \subseteq B\) be a ring extension and \(x\) an indeterminate over \(B\). Then the ring \(A \bowtie^{i_{2}} J_{2} \cong A+x B[x]\) is \(J\)-Noetherian if and only if \(A\) and \(B[x]\) are \(J\)-Noetherian.

Proof. \((\Rightarrow)\). Assume that \(A \bowtie^{i_{2}} J_{2} \cong A+x B[x]\) is \(J\)-Noetherian. By Proposition 3.2, \(A\) is \(J\)-Noetherian and \(U_{B[x]}(x B[x])\) is a Noetherian space. By Lemma 3.7, \(\operatorname{Max}(B)\) is homeomorphic to the subspace \(\{\mathfrak{m}+(x-1) B[x] \mid \mathfrak{m} \in \operatorname{Max}(B)\}\) of \(\operatorname{Max}(B[x])\). Now since \(\{\mathfrak{m}+(x-1) B[x] \mid \mathfrak{m} \in \operatorname{Max}(B)\} \subseteq U_{B[x]}(x B[x])\), \(\operatorname{Max}(B)\) is a Noetherian space. Now since \(V_{B[x]}(x B[x])\) is homeomorphic to \(\operatorname{Max}(B)\), \(V_{B[x]}(x B[x])\) is Noetherian and hence \(\operatorname{Max}(B[x])=V_{B[x]}(x B[x]) \cup U_{B[x]}(x B[x])\) is a Noetherian space by Proposition 3.2. Thus, \(B[x]\) is \(J\)-Noetherian.
\((\Leftarrow)\). By Proposition 3.5.
Proposition 3.9. Let \(A \subseteq B\) be a ring extension and \(x\) an indeterminate over \(B\). Then the ring \(A \bowtie^{i_{2}} J_{2} \cong A+x B[x]\) is \(J\)-Noetherian if and only if \(A\) is \(J\)-Noetherian and \(B\) satisfies the ascending chain condition on radical ideals.

Proof. By Proposition 3.8 and [6, Theorem 4.4].
Remark 3.10. For a ring extension \(A \subseteq B\) assume that \(x\) is an indeterminate over \(B\). If \(A+x B[x]\) is \(J\)-Noetherian, then \(A+x B[[x]]\) is \(J\)-Noetherian, but the converse is not true in general.

Example 3.11. Let \(D \subseteq T\) be a ring extension and \(J\) an ideal of \(T\) such that \(J \cap D=\{0\}\). Then the ring \(D+J:=\{x+j \mid x \in D, j \in J\}\) is canonically isomorphic to \(D \bowtie^{i} J\), where \(i: D \hookrightarrow T\) is the natural embedding, see [3, Example 2.5]. By Corollary 3.4, if \(V_{T}(J)\) is finite, then \(D+J\) is \(J\)-Noetherian if and only if \(D\) and \(T\) are \(J\)-Noetherian. In particular, let \(D \subseteq T\) be a ring extension and \(\mathfrak{M}\) a maximal ideal of \(T\) such that \(\mathfrak{M} \cap D=\{0\}\). Then \(D+\mathfrak{M}\) is \(J\)-Noetherian ring if and only if \(D\) and \(T\) are \(J\)-Noetherian.

Lemma 3.12. Let \(R \subseteq S\) be a ring extension and \(S\) be J-Noetherian. Then \(R\) is \(J\)-Noetherian if and only if there exists a ring homomorphism \(g: A \rightarrow S\) and an ideal \(K\) of \(S\) such that \(A\) is \(J\)-Noetherian and \(R=g(A)+K\).

Proof. \((\Rightarrow)\). Let \(R\) be \(J\)-Noetherian. Set \(A=R, K=\{0\}\) and assume that \(g\) is the natural embedding.
\((\Leftarrow)\). Assume that there exists a ring homomorphism \(g: A \rightarrow S\) and an ideal \(K\) of \(S\) such that \(A\) is \(J\)-Noetherian and \(R=g(A)+K\). Thus, by [3, Proposition 5.1 (3)], \(R=g(A)+K \cong \frac{A \bowtie^{g} K}{g^{-1}(K) \times\{0\}}\). Now since \(A \bowtie^{g} K\) is \(J\)-Noetherian, \(R\) is \(J\)-Noetherian.

Lemma 3.13. Let \(R\) and \(S\) be two rings. Then \(R\) and \(S\) are \(J\)-Noetherian if and only if \(R \times S\) is \(J\)-Noetherian.

Proof. Obviously.
Now we are in a position to give a necessary and sufficient condition for the ring \(A \bowtie^{f} J\) to be \(J\)-Noetherian.

Proposition 3.14. With the notation of Proposition 3.1, \(A \bowtie^{f} J\) is \(J\)-Noetherian if and only if \(A\) and \(f(A)+J\) are \(J\)-Noetherian.

Proof. \((\Rightarrow)\). Let \(A \bowtie^{f} J\) be \(J\)-Noetherian. By [3, Proposition 5.1], \(A \cong \frac{A \bowtie^{f} J}{\{0\} \times J}\) and \(f(A)+J \cong \frac{A \bowtie^{f} J}{f^{-1}(J) \times\{0\}}\). Thus, \(A\) and \(f(A)+J\) are \(J\)-Noetherian.
\((\Leftarrow)\). Let \(A\) and \(f(A)+J\) be \(J\)-Noetherian. Thus, the ring \(A \times(f(A)+J)\) is \(J\)-Noetherian. Define \(g: A \rightarrow A \times(f(A)+J)\) by
\[
g(a):=(a, f(a)) .
\]

Clearly \(g\) is a ring homomorphism. Set \(K:=\{0\} \times J\). Hence, by Lemma 3.12, \(g(A)+K=\{(a, f(a)+j) \mid a \in A\) and \(j \in J\}=A \bowtie^{f} J\) is \(J\)-Noetherian.

Example 3.15. Let \(A\) be a ring which is not \(J\)-Noetherian (e.g., an almost Dedekind domain that is not a Dedekind domain, a polynomial ring with infinitely many variables) and let \(\mathfrak{m}\) be a maximal ideal of \(A\). Then for the localization map \(f: A \rightarrow A_{\mathfrak{m}}\) and \(J:=\mathfrak{m} A_{\mathfrak{m}}\), we have \(f(A)+J=A_{\mathfrak{m}}\) which is \(J\)-Noetherian, but \(A\) and \(A \bowtie^{f} J\) are not \(J\)-Noetherian.

Corollary 3.16. With the notation of Proposition 3.1, if \(f\) is surjective, then \(A \bowtie^{f} J\) is \(J\)-Noetherian if and only if \(A\) and \(B\) are \(J\)-Noetherian.

Corollary 3.17. With the notation of Proposition 3.1, if \(J \subseteq f(A)\), then \(A \bowtie^{f} J\) is \(J\)-Noetherian if and only if \(A\) is \(J\)-Noetherian.

Proof. Since \(J \subseteq f(A)\), we have \(f(A)+J=f(A)\), and so \(f(A)+J\) is a quotient of \(A\). Hence, the result follows from Proposition 3.14.

Proposition 3.18. Let \(f: A \rightarrow B\) be a ring homomorphism and \(J_{1}\) and \(J_{2}\) be two comaximal ideals of \(B\). Then \(A \bowtie^{f} J_{1}\) and \(A \bowtie^{f} J_{2}\) are \(J\)-Noetherian if and only if \(A\) and \(B\) are \(J\)-Noetherian.

Proof. Since \(J_{1}\) and \(J_{2}\) are comaximal ideals of \(B\), we have \(\operatorname{Max}(B)=U_{B}\left(J_{1}\right) \cup\) \(U_{B}\left(J_{2}\right)\). Hence, the proof completes by Theorem 2.5 and Proposition 3.2.

\section*{4. PSEUDO-IRREDUCIBLE IDEALS OF \(A \bowtie^{f} J\)}

In this section, we give a characterization for pseudo-irreducible ideals of \(A \bowtie^{f} J\), in special cases.

Remark 4.1. With the notation of Proposition 3.1, we have the canonical isomorphism \(A \cong \frac{A \bowtie^{f} J}{\{0\} \times J}\). Thus, every ideal of \(A \bowtie^{f} J\) containing \(\{0\} \times J\) is of the form \(I \bowtie^{f} J:=\{(i, f(i)+j) \mid i \in I, j \in J\}\) for some ideal \(I\) of \(A\). Also, we have the following canonical isomorphism:
\[
\frac{A \bowtie^{f} J}{I \bowtie^{f} J} \cong \frac{A}{I}
\]

Hence, an arbitrary ideal \(I \bowtie^{f} J\) of \(A \bowtie^{f} J\) containing \(\{0\} \times J\) is pseudo-irreducible if and only if \(I\) is a pseudo-irreducible ideal of \(A\).

With the notation of Proposition 3.1, for an ideal \(K\) of \(f(A)+J\), set:
\[
\bar{K}^{f}:=\{(a, f(a)+j) \mid f(a)+j \in K\} .
\]

Clearly, \(\bar{K}^{f}\) is an ideal of \(A \bowtie^{f} J\).

Proposition 4.2. With the notation of Proposition 3.1, let \(T\) be an ideal of \(A \bowtie^{f} J\) such that \(f^{-1}(J) \times\{0\} \subseteq T\). Then \(T={\overline{T_{f(A)+J}}}^{f}\), where \(T_{f(A)+J}\) is the ideal \(\{f(a)+j \mid(a, f(a)+j) \in T\}\) of \(f(A)+J\). Furthermore, \(T\) is a pseudo-irreducible ideal of \(A \bowtie^{f} J\) if and only if \(T_{f(A)+J}\) is a pseudo-irreducible ideal of \(f(A)+J\).

Proof. Let \(T\) be an ideal of \(A \bowtie^{f} J\). Then, clearly \(T_{f(A)+J}\) is an ideal of \(f(A)+J\). Let \((a, f(a)+j) \in T\). Then \(f(a)+j \in T_{f(A)+J}\), and so \((a, f(a)+j) \in{\overline{T_{f(A)+J}}}^{f}\). Conversely, let \((a, f(a)+j) \in{\overline{T_{f(A)+J}}}^{f}\). Thus, \(f(a)+j \in T_{f(A)+J}\). Hence, there exist \(a^{\prime} \in A\) and \(j^{\prime} \in J\) such that \(\left(a^{\prime}, f\left(a^{\prime}\right)+j^{\prime}\right) \in T\) and \(f\left(a^{\prime}\right)+j^{\prime}=f(a)+j\). Thus, \(f\left(a-a^{\prime}\right) \in J\) and so \(a-a^{\prime} \in f^{-1}(J)\). Since \(f^{-1}(J) \times\{0\} \subseteq T\), we have \(\left(a-a^{\prime}, 0\right) \in T\). Now since \(\left(a^{\prime}, f\left(a^{\prime}\right)+j^{\prime}\right)\) is also in \(T\), we have \(\left(a, f\left(a^{\prime}\right)+j^{\prime}\right) \in T\). Therefore, \((a, f(a)+j) \in T\). Thus, \(T={\overline{T_{f(A)+J}}}^{f}\).

Now let \(T\) be a pseudo-irreducible ideal of \(A \bowtie^{f} J\), and \((f(a)+j)(f(a)+j-1) \in\) \(T_{f(A)+J}\) for some \(f(a)+j \in f(A)+J\). Thus, \((a, f(a)+j)((a, f(a)+j)-(1,1)) \in T\). Since \(T\) is a pseudo-irreducible ideal of \(A \bowtie^{f} J\), we have \((a, f(a)+j) \in T\) or \(((a, f(a)+j)-(1,1)) \in T\). Now since \(T={\overline{T_{f(A)+J}}}^{f}\), we have \(f(a)+j \in T_{f(A)+J}\) or \(f(a)+j-1 \in T_{f(A)+J}\). It follows that \(T_{f(A)+J}\) is a pseudo-irreducible ideal of \(f(A)+J\). Conversely, assume that \(T_{f(A)+J}\) is a pseudo-irreducible ideal of \(f(A)+J\) and \((a, f(a)+j)((a, f(a)+j)-(1,1)) \in T\) for some \((a, f(a)+j)) \in A \bowtie^{f} J\). Thus, \((a(a-1),(f(a)+j)(f(a)+j-1)) \in T={\overline{T_{f(A)+J}}}^{f}\). This implies that \((f(a)+j)(f(a)+j-1) \in T_{f(A)+J}\) and since \(T_{f(A)+J}\) is a pseudo-irreducible ideal of \(f(A)+J\), we have \(f(a)+j \in T_{f(A)+J}\) or \(f(a)+j-1 \in T_{f(A)+J}\). Therefore, \((a, f(a)+j) \in T\) or \(((a, f(a)+j)-(1,1)) \in T\) and hence \(T\) is a pseudo-irreducible ideal of \(A \bowtie^{f} J\).

Proposition 4.3. With the notation of Proposition 3.1 let \(J \neq\{0\}\). Then \(f^{-1}(J)=\) \(\{0\}\) if and only if every ideal of \(A \bowtie^{f} J\) is of the form \(\bar{K}^{f}\) for some ideal \(K\) of \(f(A)+J\). In particular, if \(f^{-1}(J)=\{0\}\), then every pseudo-irreducible ideal of \(A \bowtie^{f} J\) is of the form \(\bar{K}^{f}\) for some pseudo-irreducible ideal \(K\) of \(f(A)+J\).

Proof. \((\Rightarrow)\). Since \(f^{-1}(J)=\{0\}\), for every ideal \(T\) of \(A \bowtie^{f} J\), we have \(f^{-1}(J) \times\) \(\{0\} \subseteq T\). Hence, Proposition 4.2 completes the proof.
\((\Leftarrow)\). Assume that every ideal of \(A \bowtie^{f} J\) is of the form \(\bar{K}^{f}\) for some ideal \(K\) of \(f(A)+J\). Thus, for the ideal \(\{(0,0)\}\) of \(A \bowtie^{f} J\) there exists an ideal \(K\) of \(f(A)+J\) such that \(\{(0,0)\}=\bar{K}^{f}=\{(a, f(a)+j) \mid f(a)+j \in K\}\). Hence, \(f^{-1}(J)=\{0\}\).

Proposition 4.4. With the notation of Proposition 3.1, if \(J \neq B\), then the ring \(A \bowtie^{f} J\) is indecomposable, equivalently the ideal \(\{(0,0)\}\) is pseudo-irreducible, if and only if \(A\) is indecomposable and the ideal \(J\) has no nonzero idempotents.

Proof. \((\Rightarrow)\). By contrapositive. If \(e\) is a nontrivial ideampotent element of \(A\), then \((e, f(e))\) is a nontrivial idempotent element of \(A \bowtie^{f} J\) or if \(j\) is a nonzero idempotent element of \(J\), then \((0, j)\) is a nontrivial idempotent element of \(A \bowtie^{f} J\).
\((\Leftarrow)\). Suppose that \(A\) is indecomposable and the ideal \(J\) has no nonzero idempotents. If \((a, f(a)+j)\) is an idempotent element of \(A \bowtie^{f} J\), then we have
\[
a^{2}=a \text { and }(f(a)+j)^{2}=f(a)+j
\]

Now since \(A\) is indecomposable, we have \(a=0\) or \(a=1\). If \(a=0\), then \(j^{2}=j\). Thus, \(j=0\). Hence, \((a, f(a)+j)=(0,0)\). If \(a=1\), then \((1+j)^{2}=1+j\). Thus, \(j^{2}=-j\). This implies that \(-j\) is an idempotent element of \(J\). Thus \(j=0\). Hence, \((a, f(a)+j)=(1,1)\). Therefore, \(A \bowtie^{f} J\) has no nontrivial idempotent elements and so \(A \bowtie^{f} J\) is indecomposable.

Proposition 4.5. With the notation of Proposition 3.1, if the ideal \(J\) has a generating set consisting of idempotents, then every pseudo-irreducible ideal of \(A \bowtie^{f} J\) is of the form \(I \bowtie^{f} J\) for some pseudo-irreducible ideal I of \(A\) or \(\bar{K}^{f}\) for some pseudo-irreducible ideal \(K\) of \(f(A)+J\).

Proof. By Remark 4.1 and Proposition 4.2, it is sufficient to show that for a pseudoirreducible ideal \(T\) of \(A \bowtie^{f} J\), we have \(\{0\} \times J \subseteq T\) or \(f^{-1}(J) \times\{0\} \subseteq T\).

By assumption, there exists a subset \(\left\{e_{i}\right\}_{i \in I}\) of idempotent elements of \(B\) such that \(J=\left\langle e_{i}\right\rangle_{i \in I}\). Since for each \(i \in I,\left(0, e_{i}\right) \in A \bowtie^{f} J\), we have \(\left(0, e_{i}\right)\left(\left(0, e_{i}\right)-\right.\) \((1,1))=(0,0) \in T\). Now since \(T\) is a pseudo-irreducible ideal of \(A \bowtie^{f} J\), we have \(\left(0, e_{i}\right) \in T\) or \(\left(0, e_{i}\right)-(1,1)=\left(-1, e_{i}-1\right) \in T\). If \(\left(-1, e_{i}-1\right) \in T\) for some \(i \in I\), then \(f^{-1}(J) \times\{0\}=\left(-1, e_{i}-1\right)\left(f^{-1}(J) \times\{0\}\right) \subseteq T\). Let us assume \(\left(0, e_{i}\right) \in T\)
for each \(i \in I\). Now let \((0, j) \in\{0\} \times J\). Since \(j \in J, j\) has an expression of the form \(j=\Sigma_{i \in I} b_{i} e_{i}\), where \(b_{i} \in B\) and almost all \(b_{i}=0\). Since \(e_{i} \in J\), we have \(\left(0, b_{i} e_{i}\right) \in A \bowtie^{f} J\) for each \(i \in I\). Thus, \((0, j)=\Sigma_{i \in I}\left(0, b_{i} e_{i}\right)\left(0, e_{i}\right) \in T\). Therefore, \(\{0\} \times J \subseteq T\), which completes the proof.

In Proposition 4.5, the assumption that \(J\) has a generating set consisting of idempotents is necessary.

Example 4.6. Let \(A:=\mathbb{Z}_{4}\) and \(B:=\mathbb{Z}_{4}[x]\). Since \(\mathfrak{p}:=\langle\overline{2}\rangle\) is a maximal ideal of \(A\), by Proposition 3.1, \(\mathfrak{p} \bowtie^{f} J\) is a maximal ideal of \(A \bowtie^{f} J\), where \(J\) is the ideal \(\langle\overline{2}, x\rangle\) of \(B\) and \(f: \mathbb{Z}_{4} \hookrightarrow \mathbb{Z}_{4}[x]\) is the natural embedding. Thus, by Proposition \(2.2(4),\left(\mathfrak{p} \bowtie^{f} J\right)^{2}\) is a pseudo-irreducible ideal of \(A \bowtie^{f} J\), but \(\{0\} \times J \nsubseteq\left(\mathfrak{p} \bowtie^{f} J\right)^{2}\) and \(f^{-1}(J) \times\{0\} \nsubseteq\left(\mathfrak{p} \bowtie^{f} J\right)^{2}\). It follows that \(\left(\mathfrak{p} \bowtie^{f} J\right)^{2}\) is not of the form \(I \bowtie^{f} J\) for some pseudo-irreducible ideal \(I\) of \(A\) or \(\bar{K}^{f}\) for some pseudo-irreducible ideal \(K\) of \(f(A)+J\).

Remark 4.7. It is easily seen that if an ideal \(I\) of a ring \(R\) can be generated by a set of idempotents, then every element of \(I\) is a multiple of an idempotent of \(I\).

Before proceeding, we need some notation. For an ideal \(I\) of a ring \(R\) let \(I^{\prime}\) be the ideal of \(R\) generated by idempotent elements of \(I\), that is, \(I^{\prime}=\left\langle\left\{e \in I \mid e^{2}=e\right\}\right\rangle\).

Lemma 4.8. Let \(I\) be an ideal of \(R\). Then if \(I\) is a pseudo-irreducible ideal of \(R\), then \(I^{\prime}\) is a pseudo-irreducible ideal of \(R\).

Proof. Let \(x^{2}-x \in I^{\prime}\) for some \(x \in R\). Thus, \(x^{2}-x \in I\). Since \(I\) is a pseudoirreducible ideal \(R\), we have \(x \in I\) or \(x-1 \in I\). Suppose that \(x \in I\). Now since \(x^{2}-x \in I^{\prime}\), by Remark 4.7, there exists \(e^{2}=e \in I^{\prime}\) such that \(x^{2}-x=r e\) for some \(r \in R\). Thus, \(x^{2}-x=\left(x^{2}-x\right) e\). Hence, \((1-e) x^{2}=(1-e) x\). Thus, \(((1-e) x)^{2}=(1-e)^{2} x^{2}=(1-e) x^{2}=(1-e) x\). This shows that \((1-e) x\) is an idempotent in \(I\), hence \((1-e) x \in I^{\prime}\). Now since \(e \in I^{\prime}\), we have \(x \in I^{\prime}\). A similar argument works when \(x-1 \in I\). Therefore, \(I^{\prime}\) is a pseudo-irreducible ideal of \(R\).

Theorem 4.9. With the notation of Proposition 3.1, let \(f^{-1}(J) \neq\{0\}\) and \(A\) be an indecomposable ring (e.g., domains and local rings ). Then every pseudo-irreducible ideal of \(A \bowtie^{f} J\) is of the form \(I \bowtie^{f} J\) for some pseudo-irreducible ideal I of \(A\) or \(\bar{K}^{f}\) for some pseudo-irreducible ideal \(K\) of \(f(A)+J\) if and only if the ideal \(J\) is generated by idempotent elements.

Proof. \((\Rightarrow)\). Since \(A\) is indecomposable, the ideal \(\{0\}\) of \(A\) is pseudo-irreducible. Thus, \(\{0\} \bowtie^{f} J\) is a pseudo-irreducible ideal of \(A \bowtie^{f} J\), and so \(\left(\{0\} \bowtie^{f} J\right)^{\prime}\) is a pseudo-irreducible of \(A \bowtie^{f} J\), by Lemma 4.8. By assumption, there are two cases:

Case1. There exists an ideal \(I\) of \(A\) such that \(\left(\{0\} \bowtie^{f} J\right)^{\prime}=I \bowtie^{f} J\). In this case, since \(A\) is indecomposable, we have \(\left(\{0\} \bowtie^{f} J\right)^{\prime}=\{0\} \times J^{\prime}\). Hence, \(I \bowtie^{f} J=\{0\} \times J^{\prime}\), and so \(J=J^{\prime}\). Therefore, the ideal \(J\) is generated by its idempotent elements.

Case2. There exists an ideal \(K\) of \(f(A)+J\) such that \(\left(\{0\} \bowtie^{f} J\right)^{\prime}=\bar{K}^{f}\). In this case, since \(f^{-1}(J) \times\{0\} \subseteq \bar{K}^{f}\), we have \(f^{-1}(J)=\{0\}\), a contradiction.
\((\Leftarrow)\). By Proposition 4.5.
In Theorem 4.9, the assumption that \(f^{-1}(J) \neq\{0\}\) is necessary.
Example 4.10. Let \(x\) be an indeterminate over the ring of integers \(\mathbb{Z}\). Set \(A:=\mathbb{Z}\), \(B:=\mathbb{Z}[x]\) and \(J:=x B\). Then, for the canonical embedding \(i: A \hookrightarrow B\) we have \(i^{-1}(J)=\{0\}\). Thus, by Proposition 4.3, every pseudo-irreducible ideal of \(A \bowtie^{i} J\) is of the form \(\bar{K}^{i}\) for some pseudo-irreducible ideal \(K\) of \(i(A)+J=A+J\), but \(J\) is not generated by idempotents.

\section*{References}
[1] Bourbaki, N. (1985). Commutative Algebra, Chapters 1-7. Springer-Verlag, New York.
[2] D'Anna, M. Finocchiaro, C. A. Fontana, M. (2016 ). New Algebraic Properties of an Amalgamated Algebra Along an Ideal. Comm. Algebra 44(5):1836-1851.
[3] D'Anna, M., Finocchiaro, C. A., Fontana, M. (2009). Amalgamated algebras along an ideal. In: Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008. Berlin: W. de Gruyter Publisher.
[4] D'Anna, M., Fontana, M. (2007). An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6:443-459.
[5] D'Anna, M., Fontana, M. (2007). The amalgamated duplication of a ring along a multiplicativecanonical ideal. Arkiv Mat. 45:241-252.
[6] Hedayat, S. Rostami, E. (2017). Decomposition of ideals into pseudo-irreducible ideals. Comm. Algebra 45(4): 1711-1718.
[7] Hedayat, S. Rostami, E. (2018). A characterization of commutative rings whose maximal ideal spectrum is Noetheria. J. Algebra Appl. 0, 1850003 [8 pages] DOI: http://dx.doi.org/10.1142/S0219498818500032.
[8] Juett, J. R. (2012). Generalized comaximal factorization of ideals. J. Algebra 352:141-166.
[9] McAdam, S., Swan, R. G. (2004). Unique comaximal factorization. J. Algebra 276:180-192.```

