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Abstract. Let f : A → B be a ring homomorphism and J an ideal of B. In

this paper, we give a necessary and sufficient condition for the amalgamated

algebra along an ideal A ./f J to be J-Noetherian. Then we give a character-

ization for pseudo-irreducible ideals of A ./f J , in special cases.
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1. Introduction

Throughout this paper all rings will be commutative with identity. We denote

by Spec(R) and Max(R) the set of prime ideals and the set of maximal ideals of R,

respectively.
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Let A and B be two rings and let J be an ideal of B. Then, for a ring homo-

morphism f : A→ B consider the following subring of A×B:

A ./f J := {(a, f(a) + j)|a ∈ A, j ∈ J}

called the amalgamation of A with B along J with respect to f which is a generaliza-

tion of the amalgamated duplication of a ring along an ideal (See [3, 4, 5] for more

details). Some classical constructions such as Nagata’s idealization, the A+ xB[x]

construction, the A + xB[[x]] construction, and the D + M construction can be

considered as special cases of the amalgamation, see [3] for more details.

For a proper ideal I of a ring R, a comaximal factorization is a product I =

I1I2...In of proper ideals with Ii + Ij = R for i 6= j. A proper ideal I is called

pseudo-irreducible if it has no comaximal factorizations except for I = I. If the

factors of a comaximal factorization I = I1I2...In are pseudo-irreducible, then the

comaximal factorization I = I1I2...In is called complete. McAdam and Swan [9,

Section 5] began the study of comaximal factorization and Juett [8] expanded the

comaximal factorization to ideal systems. In [7], the authors showed that the com-

plete comaximal factorization for every proper ideal of a ring R exists if and only

if R is J-Noetherian.

The rest of this paper is organized in three sections. Some preliminaries on

pseudo-irreducible ideals and the max-spectrum are given in Section 2. In Section

3, we give a characterization for the amalgamated algebra along an ideal A ./f J

to be J-Noetherian. In Section 4, we give a characterization for pseudo-irreducible

ideals of A ./f J , in special cases.

2. Preliminaries on Pseudo-irreducible Ideals and Max-Spectrum

Recall that a ring R is called indecomposable if it cannot be written as a direct

product of two nonzero rings or, equivalently, if it has no nontrivial idempotents.

Definition 2.1. An ideal I of a ring R is called pseudo-irreducible if R/I is inde-

composable.

In the following proposition we list some of the main properties of pseudo-

irreducible ideals, see [6, 7, 9] for details and proofs.

Proposition 2.2. For an ideal I of R, the following statements hold.
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(1) I is a pseudo-irreducible ideal of R if and only if for all r ∈ R, r(r − 1) ∈
I ⇒ (r ∈ I or r−1 ∈ I) if and only if for all ideals I1 and I2 of R, (I = I1I2

and I1 + I2 = R)⇒ (I1 = R or I2 = R).

(2) I is a pseudo-irreducible ideal of R if and only if
√
I is a pseudo-irreducible

ideal of R. In particular, every primary ideal is pseudo-irreducible.

(3) If I is a pseudo-irreducible ideal of R and J is an ideal of R such that
√
J =
√
I, then J is also a pseudo-irreducible ideal of R. In particular, any

ideal that is between I and
√
I is a pseudo-irreducible ideal.

(4) Every power of a prime ideal is a pseudo-irreducible ideal.

(5) For any two ideals I ⊆ J of R, J/I is a pseudo-irreducible ideal of R/I if

and only if J is a pseudo-irreducible ideal of R.

Definition 2.3. A comaximal factorization of a proper ideal I of R is a product

I =
∏n
i=1 Ii of proper ideals with Ii + Ij = R for i 6= j. A comaximal factorization

is complete if its factors are pseudo-irreducible.

Theorem 2.4 (Uniqueness Theorem). [9, Theorem 5.1] If I has a complete comax-

imal factorization, it is unique.

For a ring R, the Zariski topology on Spec(R) is the topology obtained by taking

the collection of sets of the form UR(I) := {P ∈ Spec(R) | I 6⊆ P} (resp. VR(I) :=

{P ∈ Spec(R) | I ⊆ P}), for every ideal I of R, as the open (resp. closed) sets.

When considered as a subspace of Spec(R), Max(R) is called max − spectrum of

R. So, its open and closed subsets are UR(I) := UR(I)∩Max(R) = {m ∈ Max(R) |
I 6⊆ m} and VR(I) := VR(I) ∩Max(R) = {m ∈ Max(R) | I ⊆ m}, respectively.

A topological space X is called Noetherian if every nonempty set of closed subsets

of X, ordered by inclusion, has a minimal element. See [1, Chapter II, Section 4]

for more details. An ideal I of R is called a J-radical ideal, if it is the intersection of

all maximal ideals containing it. Clearly, J-radical ideals of R correspond to closed

subsets of Max(R). Recall that a ring R is called J-Noetherian if it satisfies the

ascending chain condition on J-radical ideals.

In the rest of this paper, we will frequently use the following theorem, which is

the main result of [7].

Theorem 2.5. [7, Theorem 2.6] Let R be a ring. The following are equivalent:

(1) Every ideal of R has a complete comaximal factorization.



16 E. ROSTAMI

(2) For every subset {mα}α∈Λ of Max(R), and for all but finitely many β ∈ Λ,⋂
β 6=α∈Λ mα ⊆ mβ.

(3) For every infinite subset {mα}α∈Λ of Max(R), there exists some β ∈ Λ such

that
⋂
β 6=α∈Λ mα ⊆ mβ.

(4) Max(R) is a Noetherian space, i.e., R is J-Noetherian.

3. When A ./f J is J-Noetherian

In this section, we give a characterization for the amalgamation of A with B

along J with respect to f to be J-Noetherian. We begin with a result about the

space of maximal ideals of the ring A ./f J .

Proposition 3.1. [2, Corollary 2.5 and Corollary 2.7] Let f : A → B be a ring

homomorphism and J an ideal of B. For the subring A ./f J := {(a, f(a) + j)|a ∈
A, j ∈ J} of the ring A×B and for all m ∈ Max(A) and Q ∈ Max(B), set

m′f := m ./f J = {(p, f(p) + j) | p ∈ m, j ∈ J},

Q
′

:= {(a, f(a) + j) | a ∈ A, j ∈ J, f(a) + j ∈ Q}.

Then, we have the following statements:

(1) m′f and Q
′

are maximal ideals of A ./f J for all m ∈ Max(A) and Q ∈
UB(J) = Max(B) \ VB(J).

(2) Max(A ./f J) = {m′f | m ∈ Max(A)} ∪ {Q′ | Q ∈ Max(B) and J 6⊆ Q}.
(3) The map Q 7→ Q

′
establishes a homeomorphism of UB(J) = Max(B)\VB(J)

onto UA./fJ({0} × J) = Max(A ./f J) \ VA./fJ({0} × J).

Proposition 3.2. Let X be a topological space and Y1, Y2, ..., Yn be n subsets of X

such that X = ∪ni=1Yi. Then Y1, Y2, ..., Yn are Noetherian subspaces of X if and only

if X is Noetherian. In particular, with the notation of Proposition 3.1, A ./f J is

J-Noetherian if and only if A is J-Noetherian and UB(J) = {Q ∈ Max(B) | J 6⊆ Q}
is a Noetherian subspace of Max(B).

Proof. By [2, Corollary 2.5], Proposition 3.1, and Theorem 2.5.

�

Corollary 3.3. With the notation of Proposition 3.1, if J ⊆ J(B), where J(B)

is the Jacobson radical of B, then A ./f J is J-Noetherian if and only if A is

J-Noetherian.
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Proof. By Proposition 3.1 and Proposition 3.2. �

Corollary 3.4. With the notation of Proposition 3.1, if VB(J) is a Noetherian

subspace of Max(B) (e.g., | VB(J) |<∞), then A ./f J is J-Noetherian if and only

if A and B are J-Noetherian.

Proof. Since Max(B) = VB(J) ∪ UB(J), the corollary is obtained from Proposition

3.5 and Proposition 3.2. �

Proposition 3.5. With the notation of Proposition 3.1, if A and B are J-Noetherian,

then A ./f J is J-Noetherian.

Proof. By Proposition 3.2.

�

The converse of Proposition 3.5 is not true in general. See the following example.

Example 3.6. For a ring extension A ⊆ B, assume that x is an indeterminate over

B. By [3, Example 2.5], the subring A + xB[[x]] = {f(x) ∈ B[[x]] | f(0) ∈ A} of

the ring of power series B[[x]] is isomorphic to A ./i1 J1, where i1 : A ↪→ B[[x]]

is the natural embedding and J1 := xB[[x]]. By Corollary 3.3, A is J-Noetherian

if and only if A ./i1 J1 is J-Noetherian. As special case, assume that B is a ring

such that Max(B) is not Noetherian (e.g., an almost Dedekind domain that is not

a Dedekind domain, a polynomial ring with infinitely many variables) and A is the

prime subring of B. Since A is Noetherian, it is J-Noetherian. Thus, A ./i1 J1 is

J-Noetherian, but B is not J-Noetherian.

Lemma 3.7. Let R be a commutative ring. Then Max(R) is homeomorphic to the

subspace Ar := {m + (x− r)R[x] | m ∈ Max(R)} of Max(R[x]), where r ∈ R.

Proof. Define ϕ : Max(R)→ Ar by

ϕ(m) = m + (x− r)R[x].

Clearly ϕ is well-defined and bijective. Now let C be an arbitrary closed subset of

Ar. Thus, there exists a subset {fi}i∈I of R[x] such that C = VR[x](〈fi〉i∈I) ∩Ar.

If m + (x − r)R[x] ∈ VR[x](〈fi〉i∈I) ∩Ar, then fi ∈ m + (x − r)R[x] for all i ∈ I.

Hence, fi(r) ∈ m for all i ∈ I. Now if n ∈ Max(R) such that fi(r) ∈ n for all
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i ∈ I, then it is easily seen that n + (x − r)R[x] ∈ VR[x](〈fi〉i∈I) ∩ Ar. Hence,

ϕ−1(VR[x](〈fi〉i∈I) ∩Ar) = (VR(〈fi(r)〉i∈I)). Therefore, φ is continuous.

Now let C ′ be an arbitrary closed subset of Max(R). Thus, there exists a subset

{aj}j∈J of R such that C ′ = VR(〈aj〉j∈J). For each i ∈ J , set fj(x) := aj+x−r. It is

clearly that m ∈ C ′ = VR(〈aj〉j∈J) if and only if m+(x−r)R[x] ∈ VR[x](〈fi〉i∈I)∩Ar.

It follows that ϕ(C ′) = ϕ(VR(〈aj〉j∈J) = VR[x](〈fj〉i∈I)∩Ar. Therefore, ϕ is a closed

mapping and hence φ is a homeomorphism. �

For a ring extension A ⊆ B, assume that x is an indeterminate over B. By [3,

Example 2.5], the subring A+ xB[x] = {f(x) ∈ B[x] | f(0) ∈ A} of the polynomial

ring B[x] is isomorphic to A ./i2 J2, where i2 : A ↪→ B[x] is the natural embedding

and J2 := xB[x]. In the following proposition we give a necessary and sufficient

condition for the ring A ./i2 J2 to be J-Noetherian.

Proposition 3.8. Let A ⊆ B be a ring extension and x an indeterminate over B.

Then the ring A ./i2 J2
∼= A+ xB[x] is J-Noetherian if and only if A and B[x] are

J-Noetherian.

Proof. (⇒). Assume that A ./i2 J2
∼= A + xB[x] is J-Noetherian. By Proposi-

tion 3.2, A is J-Noetherian and UB[x](xB[x]) is a Noetherian space. By Lemma

3.7, Max(B) is homeomorphic to the subspace {m + (x − 1)B[x] | m ∈ Max(B)}
of Max(B[x]). Now since {m + (x − 1)B[x] | m ∈ Max(B)} ⊆ UB[x](xB[x]),

Max(B) is a Noetherian space. Now since VB[x](xB[x]) is homeomorphic to Max(B),

VB[x](xB[x]) is Noetherian and hence Max(B[x]) = VB[x](xB[x]) ∪ UB[x](xB[x]) is

a Noetherian space by Proposition 3.2. Thus, B[x] is J-Noetherian.

(⇐). By Proposition 3.5. �

Proposition 3.9. Let A ⊆ B be a ring extension and x an indeterminate over B.

Then the ring A ./i2 J2
∼= A+xB[x] is J-Noetherian if and only if A is J-Noetherian

and B satisfies the ascending chain condition on radical ideals.

Proof. By Proposition 3.8 and [6, Theorem 4.4]. �

Remark 3.10. For a ring extension A ⊆ B assume that x is an indeterminate over

B. If A+xB[x] is J-Noetherian, then A+xB[[x]] is J-Noetherian, but the converse

is not true in general.



DECOMPOSITION OF IDEALS AND ... — JMMRC VOL. 6, NUMBERS 1-2 (2017) 19

Example 3.11. Let D ⊆ T be a ring extension and J an ideal of T such that

J ∩ D = {0}. Then the ring D + J := {x + j | x ∈ D, j ∈ J} is canonically

isomorphic to D ./i J , where i : D ↪→ T is the natural embedding, see [3, Example

2.5]. By Corollary 3.4, if VT (J) is finite, then D + J is J-Noetherian if and only if

D and T are J-Noetherian. In particular, let D ⊆ T be a ring extension and M a

maximal ideal of T such that M ∩D = {0}. Then D + M is J-Noetherian ring if

and only if D and T are J-Noetherian.

Lemma 3.12. Let R ⊆ S be a ring extension and S be J-Noetherian. Then R is

J-Noetherian if and only if there exists a ring homomorphism g : A → S and an

ideal K of S such that A is J-Noetherian and R = g(A) +K.

Proof. (⇒). Let R be J-Noetherian. Set A = R, K = {0} and assume that g is the

natural embedding.

(⇐). Assume that there exists a ring homomorphism g : A → S and an ideal

K of S such that A is J-Noetherian and R = g(A) + K. Thus, by [3, Proposition

5.1 (3)], R = g(A) + K ∼= A./gK
g−1(K)×{0} . Now since A ./g K is J-Noetherian, R is

J-Noetherian. �

Lemma 3.13. Let R and S be two rings. Then R and S are J-Noetherian if and

only if R× S is J-Noetherian.

Proof. Obviously. �

Now we are in a position to give a necessary and sufficient condition for the ring

A ./f J to be J-Noetherian.

Proposition 3.14. With the notation of Proposition 3.1, A ./f J is J-Noetherian

if and only if A and f(A) + J are J-Noetherian.

Proof. (⇒). Let A ./f J be J-Noetherian. By [3, Proposition 5.1], A ∼= A./fJ
{0}×J and

f(A) + J ∼= A./fJ
f−1(J)×{0} . Thus, A and f(A) + J are J-Noetherian.

(⇐). Let A and f(A) + J be J-Noetherian. Thus, the ring A × (f(A) + J) is

J-Noetherian. Define g : A→ A× (f(A) + J) by

g(a) := (a, f(a)).

Clearly g is a ring homomorphism. Set K := {0} × J . Hence, by Lemma 3.12,

g(A) +K = {(a, f(a) + j) | a ∈ A and j ∈ J} = A ./f J is J-Noetherian. �
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Example 3.15. LetA be a ring which is not J-Noetherian (e.g., an almost Dedekind

domain that is not a Dedekind domain, a polynomial ring with infinitely many vari-

ables) and let m be a maximal ideal of A. Then for the localization map f : A→ Am

and J := mAm, we have f(A) + J = Am which is J-Noetherian, but A and A ./f J

are not J-Noetherian.

Corollary 3.16. With the notation of Proposition 3.1, if f is surjective, then

A ./f J is J-Noetherian if and only if A and B are J-Noetherian.

Corollary 3.17. With the notation of Proposition 3.1, if J ⊆ f(A) , then A ./f J

is J-Noetherian if and only if A is J-Noetherian.

Proof. Since J ⊆ f(A), we have f(A) + J = f(A), and so f(A) + J is a quotient of

A. Hence, the result follows from Proposition 3.14. �

Proposition 3.18. Let f : A→ B be a ring homomorphism and J1 and J2 be two

comaximal ideals of B. Then A ./f J1 and A ./f J2 are J-Noetherian if and only

if A and B are J-Noetherian.

Proof. Since J1 and J2 are comaximal ideals of B, we have Max(B) = UB(J1) ∪
UB(J2). Hence, the proof completes by Theorem 2.5 and Proposition 3.2.

�

4. pseudo-irreducible ideals of A ./f J

In this section, we give a characterization for pseudo-irreducible ideals of A ./f J ,

in special cases.

Remark 4.1. With the notation of Proposition 3.1, we have the canonical isomor-

phism A ∼= A./fJ
{0}×J . Thus, every ideal of A ./f J containing {0} × J is of the form

I ./f J := {(i, f(i) + j) | i ∈ I, j ∈ J} for some ideal I of A. Also, we have the

following canonical isomorphism:

A ./f J

I ./f J
∼=
A

I
.

Hence, an arbitrary ideal I ./f J of A ./f J containing {0}×J is pseudo-irreducible

if and only if I is a pseudo-irreducible ideal of A.
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With the notation of Proposition 3.1, for an ideal K of f(A) + J , set:

K
f

:= {(a, f(a) + j) | f(a) + j ∈ K}.

Clearly, K
f

is an ideal of A ./f J .

Proposition 4.2. With the notation of Proposition 3.1, let T be an ideal of A ./f J

such that f−1(J) × {0} ⊆ T . Then T = Tf(A)+J
f

, where Tf(A)+J is the ideal

{f(a) + j | (a, f(a) + j) ∈ T} of f(A) + J . Furthermore, T is a pseudo-irreducible

ideal of A ./f J if and only if Tf(A)+J is a pseudo-irreducible ideal of f(A) + J .

Proof. Let T be an ideal of A ./f J . Then, clearly Tf(A)+J is an ideal of f(A) + J .

Let (a, f(a) + j) ∈ T . Then f(a) + j ∈ Tf(A)+J , and so (a, f(a) + j) ∈ Tf(A)+J
f
.

Conversely, let (a, f(a) + j) ∈ Tf(A)+J
f
. Thus, f(a) + j ∈ Tf(A)+J . Hence, there

exist a′ ∈ A and j′ ∈ J such that (a′, f(a′) + j′) ∈ T and f(a′) + j′ = f(a) + j.

Thus, f(a − a′) ∈ J and so a − a′ ∈ f−1(J). Since f−1(J) × {0} ⊆ T , we have

(a − a′, 0) ∈ T . Now since (a′, f(a′) + j′) is also in T , we have (a, f(a′) + j′) ∈ T .

Therefore, (a, f(a) + j) ∈ T . Thus, T = Tf(A)+J
f
.

Now let T be a pseudo-irreducible ideal of A ./f J , and (f(a)+j)(f(a)+j−1) ∈
Tf(A)+J for some f(a)+ j ∈ f(A)+J . Thus, (a, f(a)+ j)((a, f(a)+ j)− (1, 1)) ∈ T .

Since T is a pseudo-irreducible ideal of A ./f J , we have (a, f(a) + j) ∈ T or

((a, f(a) + j) − (1, 1)) ∈ T . Now since T = Tf(A)+J
f
, we have f(a) + j ∈ Tf(A)+J

or f(a) + j − 1 ∈ Tf(A)+J . It follows that Tf(A)+J is a pseudo-irreducible ideal of

f(A)+J . Conversely, assume that Tf(A)+J is a pseudo-irreducible ideal of f(A)+J

and (a, f(a) + j)((a, f(a) + j) − (1, 1)) ∈ T for some (a, f(a) + j)) ∈ A ./f J .

Thus, (a(a − 1), (f(a) + j)(f(a) + j − 1)) ∈ T = Tf(A)+J
f
. This implies that

(f(a) + j)(f(a) + j − 1) ∈ Tf(A)+J and since Tf(A)+J is a pseudo-irreducible ideal

of f(A) + J , we have f(a) + j ∈ Tf(A)+J or f(a) + j − 1 ∈ Tf(A)+J . Therefore,

(a, f(a) + j) ∈ T or ((a, f(a) + j)− (1, 1)) ∈ T and hence T is a pseudo-irreducible

ideal of A ./f J . �

Proposition 4.3. With the notation of Proposition 3.1 let J 6= {0}. Then f−1(J) =

{0} if and only if every ideal of A ./f J is of the form K
f

for some ideal K of

f(A) + J . In particular, if f−1(J) = {0}, then every pseudo-irreducible ideal of

A ./f J is of the form K
f

for some pseudo-irreducible ideal K of f(A) + J .
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Proof. (⇒). Since f−1(J) = {0}, for every ideal T of A ./f J , we have f−1(J) ×
{0} ⊆ T . Hence, Proposition 4.2 completes the proof.

(⇐). Assume that every ideal of A ./f J is of the form K
f

for some ideal K of

f(A) +J . Thus, for the ideal {(0, 0)} of A ./f J there exists an ideal K of f(A) +J

such that {(0, 0)} = K
f

= {(a, f(a) + j) | f(a) + j ∈ K}. Hence, f−1(J) = {0}.
�

Proposition 4.4. With the notation of Proposition 3.1, if J 6= B, then the ring

A ./f J is indecomposable, equivalently the ideal {(0, 0)} is pseudo-irreducible, if

and only if A is indecomposable and the ideal J has no nonzero idempotents.

Proof. (⇒). By contrapositive. If e is a nontrivial ideampotent element of A, then

(e, f(e)) is a nontrivial idempotent element of A ./f J or if j is a nonzero idempotent

element of J , then (0, j) is a nontrivial idempotent element of A ./f J .

(⇐). Suppose that A is indecomposable and the ideal J has no nonzero idempo-

tents. If (a, f(a) + j) is an idempotent element of A ./f J , then we have

a2 = a and (f(a) + j)2 = f(a) + j.

Now since A is indecomposable, we have a = 0 or a = 1. If a = 0, then j2 = j.

Thus, j = 0. Hence, (a, f(a) + j) = (0, 0). If a = 1, then (1 + j)2 = 1 + j. Thus,

j2 = −j. This implies that −j is an idempotent element of J . Thus j = 0. Hence,

(a, f(a) + j) = (1, 1). Therefore, A ./f J has no nontrivial idempotent elements

and so A ./f J is indecomposable. �

Proposition 4.5. With the notation of Proposition 3.1, if the ideal J has a gen-

erating set consisting of idempotents, then every pseudo-irreducible ideal of A ./f J

is of the form I ./f J for some pseudo-irreducible ideal I of A or K
f

for some

pseudo-irreducible ideal K of f(A) + J .

Proof. By Remark 4.1 and Proposition 4.2, it is sufficient to show that for a pseudo-

irreducible ideal T of A ./f J , we have {0} × J ⊆ T or f−1(J)× {0} ⊆ T .

By assumption, there exists a subset {ei}i∈I of idempotent elements of B such

that J = 〈ei〉i∈I . Since for each i ∈ I, (0, ei) ∈ A ./f J , we have (0, ei)((0, ei) −
(1, 1)) = (0, 0) ∈ T . Now since T is a pseudo-irreducible ideal of A ./f J , we have

(0, ei) ∈ T or (0, ei)− (1, 1) = (−1, ei − 1) ∈ T . If (−1, ei − 1) ∈ T for some i ∈ I,

then f−1(J) × {0} = (−1, ei − 1)(f−1(J) × {0}) ⊆ T . Let us assume (0, ei) ∈ T
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for each i ∈ I. Now let (0, j) ∈ {0} × J . Since j ∈ J , j has an expression of the

form j = Σi∈Ibiei, where bi ∈ B and almost all bi = 0. Since ei ∈ J , we have

(0, biei) ∈ A ./f J for each i ∈ I. Thus, (0, j) = Σi∈I(0, biei)(0, ei) ∈ T . Therefore,

{0} × J ⊆ T , which completes the proof. �

In Proposition 4.5, the assumption that J has a generating set consisting of

idempotents is necessary.

Example 4.6. Let A := Z4 and B := Z4[x]. Since p := 〈2〉 is a maximal ideal of

A, by Proposition 3.1, p ./f J is a maximal ideal of A ./f J , where J is the ideal

〈2, x〉 of B and f : Z4 ↪→ Z4[x] is the natural embedding. Thus, by Proposition

2.2(4), (p ./f J)2 is a pseudo-irreducible ideal of A ./f J , but {0} × J 6⊆ (p ./f J)2

and f−1(J)× {0} 6⊆ (p ./f J)2. It follows that (p ./f J)2 is not of the form I ./f J

for some pseudo-irreducible ideal I of A or K
f

for some pseudo-irreducible ideal K

of f(A) + J .

Remark 4.7. It is easily seen that if an ideal I of a ring R can be generated by a

set of idempotents, then every element of I is a multiple of an idempotent of I.

Before proceeding, we need some notation. For an ideal I of a ring R let I ′ be the

ideal of R generated by idempotent elements of I, that is, I ′ = 〈{e ∈ I | e2 = e}〉.

Lemma 4.8. Let I be an ideal of R. Then if I is a pseudo-irreducible ideal of R,

then I ′ is a pseudo-irreducible ideal of R.

Proof. Let x2 − x ∈ I ′ for some x ∈ R. Thus, x2 − x ∈ I. Since I is a pseudo-

irreducible ideal R, we have x ∈ I or x − 1 ∈ I. Suppose that x ∈ I. Now since

x2 − x ∈ I ′, by Remark 4.7, there exists e2 = e ∈ I ′ such that x2 − x = re for

some r ∈ R. Thus, x2 − x = (x2 − x)e. Hence, (1 − e)x2 = (1 − e)x. Thus,

((1 − e)x)2 = (1 − e)2x2 = (1 − e)x2 = (1 − e)x. This shows that (1 − e)x is an

idempotent in I, hence (1 − e)x ∈ I ′. Now since e ∈ I ′, we have x ∈ I ′. A similar

argument works when x−1 ∈ I. Therefore, I ′ is a pseudo-irreducible ideal of R. �

Theorem 4.9. With the notation of Proposition 3.1, let f−1(J) 6= {0} and A be an

indecomposable ring (e.g., domains and local rings ). Then every pseudo-irreducible

ideal of A ./f J is of the form I ./f J for some pseudo-irreducible ideal I of A or

K
f

for some pseudo-irreducible ideal K of f(A) + J if and only if the ideal J is

generated by idempotent elements.
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Proof. (⇒). Since A is indecomposable, the ideal {0} of A is pseudo-irreducible.

Thus, {0} ./f J is a pseudo-irreducible ideal of A ./f J , and so ({0} ./f J)′ is a

pseudo-irreducible of A ./f J , by Lemma 4.8. By assumption, there are two cases:

Case1. There exists an ideal I of A such that ({0} ./f J)′ = I ./f J . In

this case, since A is indecomposable, we have ({0} ./f J)′ = {0} × J ′. Hence,

I ./f J = {0} × J ′, and so J = J ′. Therefore, the ideal J is generated by its

idempotent elements.

Case2. There exists an ideal K of f(A) +J such that ({0} ./f J)′ = K
f
. In this

case, since f−1(J)× {0} ⊆ Kf
, we have f−1(J) = {0}, a contradiction.

(⇐). By Proposition 4.5. �

In Theorem 4.9, the assumption that f−1(J) 6= {0} is necessary.

Example 4.10. Let x be an indeterminate over the ring of integers Z. Set A := Z,

B := Z[x] and J := xB. Then, for the canonical embedding i : A ↪→ B we have

i−1(J) = {0}. Thus, by Proposition 4.3, every pseudo-irreducible ideal of A ./i J

is of the form K
i

for some pseudo-irreducible ideal K of i(A) + J = A + J , but J

is not generated by idempotents.
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