[1] E. Asplund, Chebyshsev sets in Hilbert spaces, Trans. Amer. Math. Soc. 144 (1969),
235240
[2] C. Franchetti, M. Furi, Some characteristic properties of real Hilbert spaces, Rev.
Roumaine Math. Pures Appl. 17 (1972), 1045-1048.
[3] R. C. Buck, Applications of duality in approximation theory, In Approximation of Func-
tions (Proc. Sympos. General Motors Res. Lab., 1964), (1965), 27-42.
[4] S. Elumalai and R. Vijayaragavan, Farthest points in normed linear spaces, General
Mathematics 14 (3) (2006), 9-22.
[5] C. Franchetti and I. Singer, Deviation and farthest points in normed linear spaces, Rev.
Roum Math. Pures et appl, 24 (1979), 373-381.
[6] O. Hadzic, A theorem on best approximations and applications, Univ. u Novom Sadu
Zb. Rad. Prirod.-Mat. Fak. Ser. Mat, 22 (1992), 47-55.
[7] R. Khalil and Sh. Al-Sharif, Remotal sets in vector valued function spaces, Scientiae
Mathematicae Japonicae. (3) (2006), 433-442.
[8] H. V. Machado, A characterization of convex subsets of normed spaces, Kodai Math.
Sem. Rep, 25 (1973), 307-320.
[9] M. Marti'n and T. S. S. R. K. Rao, On remotality for convex sets in Banach spaces, J.
Approx. Theory (162) (2010), 392-396.
[10] M. Martin and T. S. S. R. K. Rao, On remotality for convex sets in Banach spaces, J.
Approx. Theory, (162) (2010), 392-396.
[11] H . Mazaheri, T. D. Narang and H. R. Khademzadeh, Nearest and Farthest points in
normed spaces, In Press Yazd University, 2015.
[12] H. Mazaheri, A characterization of weakly-Chebyshev subspaces of Banach spaces, J.
Nat. Geom. 22 (2002), no. 1-2, 39{48.
[13] H. Mohebi, On quasi-Chebyshev subspaces of Banach spaces, J. Approx. Theory 107
(2000), no. 1, 87{95.
[14] T. D. Narang and Sangeeta, On singletonness of uniquely remotal sets, Bull. Belg. Soc.
Simon. Stevin, 18 (2011), 113-120. Niknam, A., On uniquely remotal sets, Indian J. Pure
Appl. Math., 15 (1984), 1079-1083.
[15] A. Niknam, Continuity of the farthest point map, Indian J. Pure Appl. Math. 18 (1987),
630-632.
[16] Sangeeta and T. D. Narang, On the farthest points in convex metric spaces and linear
metric spaces, Publications de l'Institut Mathematique 95 (109) (2014), 229-238.
[17] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces,
Springer-Verlag, New York-Berlin 1970.