[1] M. V. Ahmadi, M. Doostparast, J. Ahmadi, Statistical inference for the lifetime performance index based on generalised order statistics from exponential distribution, International Journal of Systems Science. 46(6) (2015) 1094-1107.
[2] M. V. Ahmadi, J. Ahmadi. M. Abdi, Evaluating the lifetime performance index of products based on generalized order statistics from two-parameter exponential model, International Journal of System Assurance Engineering and Management. 10 (2019) 251-275.
[3] H. T. Chen, L. I. Tong, K. S. Chen, Assessing the lifetime performance of electronic components by con dence interval, Journal of the Chinese Institute of Industrial Engineers. 19 (2002) 5360.
[4] N. Clark, M. Dabkowski, P. J. Driscoll, D. Kennedy, I. Kloo, H. Shi, Empirical decision rules for improving the uncertainty reporting of small sample system usability scale scores, International Journal of Human-Computer Interaction, 37 (13) (2021) 1191-1206.
[5] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaa, L. E. Meester, A Modern Introduction to Probabitity and Statistics. Springer, Verlag, London, 2005.
[6] B. Efron, Bootstrap methods: another look at the jacknife. The Annals of Statistics. 7(1) (1979) 1-26.
[7] B. Efron, Nonparametric standard errors and con dence intervals, The Canadian Journal of Statistics. 9(2) (1981) 139-172.
[8] B. Efron, The jacknife, the bootstrap and other resampling plans. In Regional Conference Series in Applied Mathematics, Philadelphia: SIAM, 1982.
[9] B. Efron, Bootstrap con dence intervals for a class of parametric problems, Biometrika. 72 (1985) 45-58.
[10] B. Efron, R. Tibshirani, Bootstrap methods for standard errors, con dence intervals, and other measures of statistical accuracy, Statistical Science. 1(1) (1986) 54-75.
[11] B. Efron, Better bootstrap con dence intervals, Journal of the American Statistical Association. 82 (1987) 171-185.
[12] N. I. Fisher, P. Switzer, Chi-plots for assessing dependence, Biometrika. 72(2) (1985) 253-265.
[13] N. I. Fisher, P. Switzer, Graphical assessment of dependence: Is a picture worth 100 tests?, The American Statistician. 55(3) (2001) 233-239.
[14] C. Genest, J. MacKay, The Joy of Copulas: Bivariate Distributions with Uniform Marginals (Com: 87V41 P248), The American Statistician. 40 (1986) 280-283.
[15] C. Genest, L. P. Rivest, Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association. 88 (1993) 1034-1043.
[16] C. Genest, J. C. Boies, Detecting dependence with Kendall plots, The American Statistician. 57(4) (2003) 275-284.
[17] C. Genest, J. F. Quessy, B. Remillard, Goodness-of- t procedures for copula models based on the probability integral transformation, Scandinavian Journal of Statistics. 33(2) (2006) 337-366.
[18] C. Genest, B. Remillard, Validity of the parametric bootstrap for goodness-of- t testing in semiparametric models, Annales de 1'Institut Henri Poincare- Probabilites et Statistiques. 44(6) (2008) 1096-1127.
[19] C. Genest, A. C. Favre, Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask, Journal of Hydrologic Engineering. 12 (2007) 347-368.
[20] S. S. Hashemi-Bosra, E. Salehi, The mean residual lifetime of parallel systems with two exchangeable components under the generalized Farlie-Gumbel-Morgenstern model, Journal of Mahani Mathematical Research Center, 2 (2) (2013) 61-72.
[21] H. Joe, Multivariate Models and Dependence Concepts, Chapman & Hall Ltd, 1997.
[22] M. E. Johnson, Multivariate Statistical Simulation. Wiley, New York, 1987.
[23] M. Khademi, V. Amirzadeh, Process control using assumed fuzzy test and fuzzy acceptance region, Journal of Mahani Mathematical Research Center, 2 (2) (2013) 29-37.
[24] J. E. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley and Sons Inc., New York, 1982.
[25] W. C. Lee, J. W. Wu, C. W. Hong, Assessing the lifetime performance index of products with the exponential distribution under progressively type II right censored samples, Journal of Computational and Applied Mathematics. 231 (2009) 648-656.
[26] E. L. Lehmann, G. Casella, Theory of Point Estimation. 2nd ed. New York: Springer, 1998.
[27] S. Maiti, A. Bhattacharya, M. Saha, On generalizing lifetime performance index, Life Cycle Reliability and Safety Engineering. 10 (2021) 31-38.
[28] D.C. Montgomery, Introduction To Statistical Quality Control, John Wiley & Sons, New York, NY, USA, 1985.
[29] R.B. Nelsen, An Introduction to Copulas, Springer-Verlag, 1999.
[30] J. Orlo , J. Bloom, Bootstrap con dence intervals, Class 24, 18.05, Springer, Massachusetts Institute of Technology: MIT OpenCourseWare, 2017,
https://ocw.mit.edu.
[31] W. L. Pearn, M-H Shu, Manufacturing capability control for multiple power-distribution switch processes based on modi ed Cpk MPPAC , Microelectronics Reliability. 43 (2003) 963-975.
[32] S. M. Ross, Introduction to probability and statistics for engineers and scientists (4th ed.). Associated Press, 2009.
[33] A.W. Sklar, Fonctions de repartition a n dimension et leurs marges, Publications de l'Institut de Statistique de l'Universite de Paris. 8 (1959) 229-231.
[34] A. A-E.Soliman, E. A-S. Ahmed, A. H. Abd Ellah, A-W. A. Farghal, Assessing the lifetime performance index using exponentiated Frechet distribution with the progressive rst-failure-censoring scheme, American Journal of Theoretical and Applied Statistics. 3(6) (2014) 167-176.
[35] L. I. Tong, K. S. Chen, H. T. Chen, Statistical testing for assessing the performance of lifetime index of electronic components with exponential distribution, Journal of Quality Reliability Management. 19 (2002) 812-824.
[36] W. Wang, M. T. Wells, Model selection and semiparametric inference for bivariate failure-time data (with discussion), Journal of the American Statistical Association. 95(1) (2000) 62-76.
[37] S. Wang, X. Zhang, L. Liu, Multiple stochastic correlations modeling for microgrid reliability and economic evaluation using pair-copula function, International Journal of Electrical Power & Energy Systems. 76 (2016) 44-52.
[38] A. Wiboonpongse, J. Liu, S. Sriboonchitta, T. Denoeux, Modeling dependence between error components of the stochastic frontier model using copula: Application to intercrop co ee production in Northern Thailand, International Journal of Approximate Reasoning. 65 (2015) 34-44.
[39] J. W. Wu, C. W. Hong, W. C. Lee, Computational procedure of lifetime performance index of products for the Burr XII distribution with upper record values, Applied Mathematics and Computation. 227 (2014) 701-716.
[40] J. Yan, Multivariate Modeling with Copulas and Engineering Applications. In H Pham (ed.), Handbook in Engineering Statistics, Springer-Verlag, 2006, pp. 973990.
[41] L. Yang, X. J. Cai, M. Li, S. Hamori, Modeling dependence structures among international stock markets: Evidence from hierarchical Archimedean copulas, Economic Modelling. 51 (2015) 308-314.
[42] K. S. Zhang, J. G. Lin, P. R. Xu, A new class of copulas involving geometric distribution: Estimation and applications, Insurance: Mathematics and Economics. 66 (2016) 1-10.