[1] M.A. Aba Oud , A. Ali , H. Alrabaiah, S. Ullah, M. Altaf Khan and S. Islam, A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load, Advances in Di erence Equations vol. 106, no. 2021 (2021).
[2] S.A. Abdullah, S. Owyed, A.H. Abdel-Aty, E.E. Mahmoud, K. Shah, H. Alrabaiah, Mathematical analysis of COVID-19 via new mathematical model, Chaos, Solitons and Fractals vol. 143 (2021) 110585.
[3] A. Askari hemmat, Z. Kalateh Bojdi and M. KEBRYAEE, An application of daubechies wavelet in drug release model, Journal of Mahani Mathematical Research Center, vol. 8(2019).
[4] F. Bruer, Mathematical epidemiology: Past, present, and future,infectious disease modelling, vol. 2, no. 2 (2017) 113-127.
[5] F. Bruer, P. van den Driessche, J. Watmough, Mathematical Epidemiology, Springer, 1945.
[6] S. Bushnaq, T. Saeed, D. F.M.Torres and A. Zeb, Control of COVID-19 dynamics through a fractional-order model, AEJ - Alexandria Engineering Journal, vol. 60, no. 4 (2021) 3587-3592.
[7] P.B. Dhandapani, D. Baleanu, J. Thippan and V. Sivakumar, On sti , fuzzy IRD-14 day average transmission model of COVID-19 pandemic disease, AIMS Bioengineering vol. 7, no. 4 (2020) 208223.
[8] P.D. En'ko, On the Course of Epidemics of Some Infectious Diseases, International journal of epidemiology vol. 18, no. 4 (1989) 749-755.
[9] H. Fattahpour and H. R. Z. Zangeneh, Bifurcation analysis of a DDE model of the coral REEF, Journal of Mahani Mathematical Research Center, vol. 5(2016).
[10] D. Fanelli, F. Piazza, Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Solitons Fractals vol. 134 (2020) 109761.
[11] M. Farkas, Dynamical Models in Biology, Academic press, 2001.
[12] E. Hesameddini and M. Azizi, Grunwald- Letnikov scheme forsyatem of chronic myelogenous leukemia fractional di erential equations and its optimal control of drug treatment, Journal of Mahani Mathematical Research Center, vol.5(2016).
[13] S. Hussain, A. Zeb, A. Rasheed and T. Saeed, Stochastic mathematical model for the spread and control of Corona virus, Advances in Di erence Equations, vol. 574 (2020).
[14] W.O. Kermack and A.G. Mckendrick.A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London Series A vol. 115, no. 722 (1927)700721.
[15] M. Kizito and J, Tumwiine, A mathematical model of treatment and vaccination interventions of pneumococcal pneumonia infection dynamics, Juornal of Applied Mathematics, Article ID 2539465 (2018).
[16] A.J. Kucharski, T.W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, R.M. Eggo, F. Sun, M. Jit, and J.D. Munday, Early dynamics of transmission and control of COVID-19: a mathematical modelling study, The Lancet Infectious Diseases vol. 20, no. 5 (2020) 553558.
[17] Y. Liu, A.A Gayle, A. Wilder-Smith and J. Rocklv, The reproductive number of COVID-19 is higher compared to SARS coronavirus, Journal of Travel Medicine vol. 27, no. 2 (2020).
[18] T. Sitthiwirattham, A. Zeb, S. Chasreechai, Z. Eskandari, M. Tilioua and S. Djilalif, Analysis of a discrete mathematical COVID-19 model, Results in Physics, vol. 29 (2021).
[19] G. Nazir, A. Zeb, K. Shaha, T. Saeed, R. AliKhan, S. Irfan and U. Khan, Study of COVID-19 Mathematical Model of Fractional Order Via Modi ed Euler Method, AEJ - Alexandria Engineering Journal, vol. 60, no. 6 (2021), 5287-5296.
[20] T. Waezizadeh and F. Fatehi, Entropy for DTMC SIS epidemic model, Journal of Mahani Mathematical Research Center, vol.5(2016).
[21] A. Zeb, E. Alzahrani, V. Suat Erturk, G. Zaman, Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class, BioMed Research International, vol. 2020 (2020).
[22] Z. Zhang, R. Gul and A. Zeb, Global sensitivity analysis of COVID-19 mathematical model, AEJ - Alexandria Engineering Journal, vol. 60, no. 1(2021), 565-572.
[23] Z. Zhang, A. Zeb, E. Alzahrani and S. Iqbal, Crowding e ects on the dynamics of COVID-19 mathematical model, Advances in Di erence Equations, vol. 675 (2020).
[24] Z. Zhang, A. Zeb, O. F. Egbelowo and V. S. Erturk, Dynamics of a fractional order mathematical model for COVID-19 epidemic, Advances in Di erence Equations, vol. 420 (2020).
[25] Z. Zhang, A. Zeb, S. Hussain and E. Alzahrani, Dynamics of COVID-19 mathematical model with stochastic perturbation, Advances in Di erence Equations, vol. 451 (2020).