Neutrosophic $\mathcal{N}-$structures on Sheffer stroke BE-algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, Ege University, Izmir, Turkey

2 Department of Mathematics, Izmir University of Economics, Izmir, Turkey

3 Department of Mathematics, Payame Noor University, Tehran, Iran

Abstract

In this study, a neutrosophic $\mathcal{N}-$subalgebra, a (implicative) neutrosophic $\mathcal{N}-$ filter, level sets of these neutrosophic $\mathcal{N}-$structures and their properties are introduced on a Sheffer stroke BE-algebras (briefly, SBE-algebras). It is proved that the level set of neutrosophic $\mathcal{N}-$ subalgebras ((implicative) neutrosophic $\mathcal{N}-$filter) of this algebra is the SBE-subalgebra ((implicative) SBE-filter) and vice versa. Then we present relationships between upper sets and neutrosophic $\mathcal{N}-$filters of this algebra. Also, it is given that every neutrosophic $\mathcal{N}-$filter of a SBE-algebra is its neutrosophic $\mathcal{N}-$subalgebra but the inverse is generally not true. We study on neutrosophic $\mathcal{N}-$filters of SBE-algebras by means of SBE-homomorphisms, and present relationships between mentioned structures on a SBE-algebra in detail. Finally, certain subsets of a SBE-algebra are determined by means of $\mathcal{N}-$functions and some properties are examined.

Keywords


[11] J. C. Abbott, Implicational algebras, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie vol. 11, no. 1 (1967) 3{23.
[2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems vol. 20, no. 1 (1986) 87{96.
[3] A. Borumand Saeid, A. Rezaei and R. A. Borzooei, Some types of  lters in BE-algebras, Mathematics in Computer Science vol. 7, no. 3 (2013) 341{352.
[4] I. Chajda, She er operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica vol. 44, no. 1 (2005) 19{23.
[5] I. Chajda, R. Halas and H. Langer, Operations and structures derived from non-associative MV-algebrasSoft Computing vol. 23, no. 12 (2019) 3935{3944.
[6] Y. B. Jun, K. J. Lee and S. Z. Song, N􀀀ideals of BCK/BCI-algebras, Journal of the Chungcheong mathematical Society vol. 22, no. 3 (2009) 417{437.
[7] Y. B. Jun, F. Smarandache and H. Bordbar, "Neutrosophic N-structures applied to BCK/BCI-algebras, Information vol. 8, no. 4 (2017) 1-12.
[8] T. Katican, T. Oner and A. Borumand Saeid, On She er stroke BE-algebras, Discussione Mathematicae General Algebra and Applications in press (2021).
[9] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, Neutrosophic N-structures and their applications in semigroups,vol. 78, In nite Study, 2017.
[10] H. S. Kim and Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae vol. 66, no. 1 (2007) 113{116.
[11] W. McCune, R. Vero , B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, Journal of Automated Reasoning vol. 29, no. 1 (2002) 1{16.
[12] T. Oner, T. Katican and A. Borumand Saeid, Relation between She er stroke and Hilbert algebras, Categories and General Algebraic Structures with Applications vol. 14, no. 1 (2021) 245{268.
[13] T. Oner, T. Katican and A. Borumand Saeid, Fuzzy  lters of She er stroke Hilbert algebras, Journal of Intelligent & Fuzzy Systems vol. 40, no. 1 (2021) 759{772.
[14] T. Oner, T. Katican, A. Borumand Saeid, M. Terziler, Filters of strong She er stroke non-associative MV-algebras, Analele Universitatii Ovidius Constanta-Seria Matematica vol. 29, no. 1 (2021) 143{164.
[15] T. Oner, T. Katican and A. Rezaei, Neutrosophic N-structures on strong She er stroke non-associative MV-algebras, Neutrosophic Sets and Systems vol. 40 (2021) 235{252.
[16] T. Oner, T. Katican and A. Borumand Saeid, Neutrosophic N-structures on She er stroke Hilbert algebras, Neutrosophic Sets and Systems vol. 42 (2021) 221{238.
[17] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, An. Univ. Oradea, Fasc. Mat. vol. 19, no. 1 (2012) 33{44.
[18] A. Rezaei, A. Borumand Saeid and F. Smarandache, Neutrosophic  lters in BE-algebras, Ratio Mathematica vol. 29, no. 1 (2015) 65{79.
[19] H. M. She er, A set of  ve independent postulates for Boolean algebras, with application to logical constants, Transactions of the American Mathematical Society vol. 14, no. 4 (1913) 481{488.
[20] F. Smarandache, A unifying  eld in logics. neutrosophy: Neutrosophic probability, set and logic, American Research Press, Rehoboth, 1999.
[21] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics vol. 24, no. 3 (2005) 287{297.
[22] S. Z. Song, F. Smarandache and Y. B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Information vol. 8, no. 4 (2017) 130.
[23] L. A. Zadeh, Fuzzy sets, Information and Control vol. 8, no. 3 (1965 ) 338{353.
[24] http://fs.gallup.unm.edu/FlorentinSmarandache.htm.