1-Designs Constructed from the Groups $PSL_{2}(81)$ and $PSL_{2}(89)$

Document Type : Research Paper

Author

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran.

Abstract

In this paper, some designs from the primitive permutation representations of the groups $PSL_2(81)$ and $PSL_2(89)$ are constructed using the Key-Moori Method 1. We determine the automorphism groups of all the obtained designs and prove that the groups $PSL_2(81)$, $PSL_2(81){}^{.}2$, $PSL_2(81)\text{:}2$, $PGL_2(81)$, $P\Sigma L_2(81)$, $P\Gamma L_2(81)$, $PSL_2(89)$ and $PSL_2(89)\text{:}2$ appear as the automorphism groups of these constructed designs.

Keywords


[1] G. Amery, S. Gomani, B. G. Rodrigues, Designs and binary codes from maximal subgroups and conjugacy classes of M11, Math. Commun. 26 (2021) 159-175.
[2] E. F. Assmus, Jr., J. D. Key, Designs and Their Codes, Cambridge University Press, Cambridge, 1992.
[3] W. Bosma, J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Sydney, 1994. http://www.magma.maths.usyd.edu.au/magma/.
[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
[5] M. R. Darafsheh, Designs from the group PSL2(q), q even, Des. Codes Cryptogr. 39 (2006) 311-316.
[6] M. R. Darafsheh, A. R. Ashra , M. Khademi, Some designs related to group actions, Ars. Combin. 86 (2008) 65-75.
[7] M. R. Darafsheh, A. R. Ashra , M. Khademi, On designs constructed by group actions, J. Combin. Math. Combin. Comput. 70 (2009) 235-245.
[8] M. R. Darafsheh, A. Iranmanesh, R. Kahkeshani, Designs from the groups PSL2(q) for certain q, Quaest. Math. 32 (2009) 1-10.
[9] R. Kahkeshani, 1-Designs from the group PSL2(59) and their automorphism groups, Math. Interdisc. Res. 3 (2018) 147-158.
[10] R. Kahkeshani, On some designs constructed from the groups PSL2(q), q = 53; 61; 64, Alg. Struc. Appl. 7, no. 1 (2020) 59-67.
[11] J. D. Key, J. Moori, Designs, codes and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput. 40 (2002) 143-159.
[12] J. D. Key, J. Moori, Correction to: Codes, designs and graphs from the Janko groups J1 and J2, J. D. Key, J. Moori, JCMCC 40 (2002) 143-159, J. Combin. Math. Combin.Comput. 64 (2008) 153.
[13] X. Mbaale, B. G. Rodrigues, Symmetric 1-designs from PSL2(q), for q a power of an odd prime, Trans. Combin. 10, no. 1 (2021) 43-61.
[14] J. Moori, B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL:2, J. Combin. Theory Ser. A 110 (2005) 53-69.
[15] J. Moori, B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra 316 (2007) 649-661.
[16] J. Moori, B. G. Rodrigues, A. Saeidi, S. Zandi, Some symmetric designs invariant under the small Ree groups, Comm. Algebra 47, no. 5 (2019) 2131-2148.
[17] J. Moori, B. G. Rodrigues, A. Saeidi, S. Zandi, Designs from maximal subgroups and conjugacy classes of Ree groups, Adv. Math. Commun. 14, no. 4 (2020) 603-611.
[18] J. Moori, A. Saeidi, Some designs and codes invariant under the Tits group, Adv. Math. Commun. 11, no. 1 (2017) 77-82.
[19] J. Moori, A. Saeidi, Constructing some designs invariant under PSL2(q), q even, Comm. Algebra 46, no. 1 (2018) 160-166.
[20] J. Moori, A. Saeidi, Some designs invariant under the Suzuki groups, Util. Math. 109 (2018) 105-114.
[21] B. Rodrigues, Codes of Designs and Graphs from Finite Simple Groups, Ph.D. Thesis, University of Natal, South Africa, 2003.
[22] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, 1982.