[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), no. 1, 87{96.
[2] H. Garg and S. Singh, A novel triangular interval type-2 intuitionistic fuzzy set and their aggregation operators, Iran. J. Fuzzy Syst., 15 (2018), 69{93.
[3] H. Garg and K. Kumar, An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making, Soft Computing, 22 (2018), no. 15, 4959{4970.
[4] H. Garg and K. Kumar, Distance measures for connection number sets based on set pair analysis and its applications to decision-making process, Applied Intelligence, 48 (2018), no. 10, 3346{3359.
[5] Y. Huang, BCI-algebra, Science Press, Beijing, (2006).
[6] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., 5(1) (2017), 35{54.
[7] A. Iampan, Multipliers and near UP- lters of UP-algebras, J. Discrete Math. Sci. Cryptogr., 24 (2021), no. 3, 667{680. DOI: 10.1080/09720529.2019.1649027
[8] H. Z. Ibrahim, T. M. Al-shami and O. G. Elbarbary, (3; 2)-fuzzy sets and their applications to topology and optimal choice, Computational Intelligence and Neuroscience, Volume 2021, Article ID 1272266, 14 pages.
https://doi.org/10.1155/2021/1272266
[9] Y. B. Jun, G. Muhiuddin and S. A. Romano, On lters in UP-algebras, A review and some new re ections, J. Int. Math. Virtual Inst., 11(1) (2021), 35{52. DOI:10.7251/JIMVI2101035J
[10] B. Kesorn, K. Maimun, W. Ratbandan and A. Iampan, Intuitionistic fuzzy sets in UP-algebras, Ital. J. Pure Appl. Math. 34 (2015), 339{364.
[11] Y. Komori, The class of BCC-algebras is not a variety, Math. Japonica 29 (1984), no.3, 391{394.
[12] S. M. Mostafa, M. A. A. Naby, M. M. M. Yousef, Fuzzy ideals of KU-algebras, Int. Math. Forum, 63 (2011), 3139{3149.
[13] A. Satirad and A. Iampan, Fuzzy soft sets over fully UP-semigroups, Eur. J. Pure Appl.Math, 12 (2019), no. 2, 294{331.
[14] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., 12 (2016), 739{756.
[15] R. R. Yager, Pythagorean fuzzy subsets, in Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), pp. 57{61, IEEE, Edmonton, Canada, 2013.