[1] M. Ahmadinia, Z. Safari, S. Fouladi, Analysis of local discontinuous Galerkin method for time-space fractional convection-di usion equations, BIT Numer. Math. Vol. 58, no. 3, (2018) 533{554
[2] M. Ahmadinia, Z. Safari, Convergence analysis of a LDG method for tempered fractional convection-di usion equations, ESAIM: Math. Model. Numer. Anal. Vol. 54, no. 1, (2020) 59-78.
[3] C. Clavero, J.C. Jorge, F. Lisbona, A uniformly convergent scheme on a nonuniform mesh for convection-di usion parabolic problems, J. Comput. Appl. Math. Vol. 154, (2003) 415{429.
[4] S. Dhawan, S. Kapoor, S. Kumar, Numerical method for advection di usion equation using FEM and B-splines, J. Comput. Sci. Vol. 3, (2012) 429{437.
[5] A. Fahim, M. A. Fariborzi Araghi, Numerical solution of convection-di usion equations with memory term based on sinc method, Comput. Methods Di er. Equ. Vol. 6, no. 3,(2018) 380{395.
[6] N. Guglielmi, M. Lopez-Fernandez, G. Nino, Numerical inverse Laplace transform for convection-di usion equations, Math. Comp. Vol. 89, (2020) 1161{1191.
[7] M. Izadi, Split-step nite di erence schemes for solving the nonlinear Fisher equation, J. Mahani Math. Res. Cent. Vol. 7, no. 1-2, (2018) 37{55.
[8] M. Izadi, Application of the Newton-Raphson method in a SDFEM for inviscid Burgers equation, Comput. Methods Di er. Equ. Vol. 8, no. 4, (2020) 708{732.
[9] M. Izadi, A second-order accurate nite-di erence scheme for the classical Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Infor. Optim. Sci. Vol. 42, no. 2, (2021) 431{448.
[10] M. Izadi, A combined approximation method for nonlinear foam drainage equation, Sci. Iran. Vol. 29, no. 1, (2022) 70{78.
[11] M. Izadi, Two-stages explicit schemes based numerical approximations of convectiondi usion equations, Int. J. Comput. Sci. Math. (2022) in press.
[12] M. Izadi, P. Roul, Spectral semi-discretization algorithm for a class of nonlinear parabolic PDEs with applications, Appl. Math. Comput. Vol. 429, (2022) Article ID 127226.
[13] M. Izadi, M.E. Samei, Time accurate solution to Benjamin-Bona-Mahony Burgers equation via Taylor-Boubaker series scheme, Bound. Value Probl. Vol. 2022, (2022) Article ID 17.
[14] M. Izadi, H.M. Srivastava, An optimized second order numerical scheme applied to the non-linear Fisher's reaction-di usion equation, J. Interdiscip. Math. Vol. 25, no. 2,(2022) 471{492.
[15] M. Izadi, S. Yuzbas, A hybrid approximation scheme for 1-D singularly perturbed parabolic convection-di usion problems, Math. Commun. Vol. 27, no. 1, (2022) 47{63.
[17] C.Y. Ku, J.E. Xiao, C.Y. Liu, Space-time radial basis function-based meshless approach for solving convection-di usion equations, Mathematics, Vol. 8 no. 10, (2020) Article ID 1735.
[18] N. Okhovati, M. Izadi, Numerical coupling of two scalar conservation laws by a RKDG method, J. Korean Soc. Ind. Appl. Math. Vol. 23, no. 3, (2019) 211{236.
[19] N. Okhovati, M. Izadi, A predictor-corrector scheme for conservation equations with discontinuous coecients, J. Math. Fund. Sci. Vol. 52, no. 3, (2020) 322-338.
[20] M. Li, Z. Zheng, An ecient multiscale-like multigrid computation for 2D convectiondi usion equations on nonuniform grids, Math. Methods Appl. Sci. Vol. 44, no. 4, (2021) 3214{3224.
[21] E. Rothe, Zweidimensionale parabolische randwertaufgaben als grenzfall eindimensionaler randwertaufgaben, Math. Ann. Vol. 102, no. 1, (1930) 650{670.
[22] H.S. Shekarabi, J. Rashidinia, Three level implicit tension spline scheme for solution of Convection-Reaction-Di usion equation, Ain Shams Eng. J. Vol. 9, (2018) 1601{1610.
[23] H. S. Shukla, M. Tamsir, An exponential cubic B-spline algorithm for multi-dimensional convection-di usion equations, Alexandria Eng. J. Vol. 57, no. 3, (2018) 1999{2006.
[24] H. M. Srivastava, H. Ahmad, I. Ahmad, P. Thounthong, M. N. Khan, Numerical simulation of 3-D fractional-order convection-di usion PDE by a local meshless method, Thermal Sci. Vol. 25 no. (1A), (2021) 347{358.
[25] H. M. Srivastava, H. I. Abdel-Gawad, K. M. Saad, Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-di usion model subjected to the Dirichlet conditions, Discrete Contin. Dyn. Syst. S Vol. 14 (2021), 3785{3801.
[26] G.W. Stewart, Afternotes on Numerical Analysis, SIAM, Vol. 49, 1996.
[27] J. Tan, An upwind nite volume method for convection-di usion equations on rectangular mesh, Chaos Solit. Fract. Vol. 118, (2019) 159{165.
[28] V. M. Tripathi, H. M. Srivastava, H. Singh, C. Swarup, S. Aggarwal, Mathematical analysis of non-isothermal reaction-di usion models arising in spherical catalyst and spherical biocatalyst, Appl. Sci. Vol. 11 (2021), Article ID 10423.
[29] S. Yuzbas, N. Sahin, Numerical solutions of singularly perturbed one-dimensional parabolic convection-di usion problems by the Bessel collocation method, Appl. Math. Comput. Vol. 220, (2013) 305{315.
[30] F. Zhou, X. Xu. Numerical solution of the convection di usion equations by the second kind Chebyshev wavelets, Appl. Math. Comput. Vol. 247, (2014) 353{367.