[1] R. de A. Araujo, A.L.I. Oliveira, S. Meira, A class of hybrid multilayer perceptrons for software development effort estimation problems, Artif. Intell. Rev vol., no. 90 (2017) 1{12.
[2] M. Abdel-Basset, W. Ding, D. El-Shahat, A hybrid Harris Hawks optimization algorithm with simulated annealing for feature selection, Expert Syst. Appl vol., no. 54 (2021) 593{637.
[3] R. Abu Khurmaa, I. Aljarah, A. Sharieh, An intelligent feature selection approach based on moth ame optimization for medical diagnosis, Neural Comput. Appl vol., no. 33 (2021) 7165{7204.
[4] R. Ahila, V. Sadasivam, K. Manimala, An integrated PSO for parameter determination and feature selection of ELM and its application in classi cation of power system disturbances, Appl. Soft Comput vol., no. 32 (2015) 23{37.
[5] B. Ahuja, V.P. Vishwakarma, Deterministic Multi-kernel based extreme learning machine for pattern classi cation, Expert Syst. Appl vol., no. 183 (2021) 115308.
[6] M. Al Asheeri, M. Hammad, Improving software cost estimation process using feature selection technique, 3rd Smart Cities Symp, (2021), 89{95.
[7] M. Azzeh, D. Neagu, P. Cowling, Improving analogy software e ort estimation using fuzzy feature subset selection algorithm, 4th Int. Work. Predict. Model. Softw. Eng, (New York, 2008), 71{78.
[8] V.K. Bardsiri, D.N.A. Jawawi, A.K. Bardsiri, E. Khatibi, LMES: A localized multiestimator model to estimate software development e ort, Eng. Appl. Artif. Intell vol.,no. 26 (2013) 2624{2640.
[9] B.W. Boehm, Software Engineering Economics, IEEE Trans. Softw. Eng. Appl vol., no.10 (1984) 4{21.
[10] P.L. Braga, A.L.I. Oliveira, S.R.L. Meira, A GA-based feature selection and parameters optimization for support vector regression applied to software e ort estimation, Proc. 2008 ACM Symp. Appl. Comput, (2008) p. 1788.
[11] L.C. Briand, I. Wieczorek, Resource Estimation in Software Engineering, Encycl. Softw. Eng vol., no. 2 (2021) 1160{1196.
[12] B. Charbuty, A. Abdulazeez, Classi cation Based on Decision Tree Algorithm for Machine Learning, J. Appl. Sci. Technol. Trends vol., no. 2 (2021) 20{28.
[13] E. D, B. B, F. T, D. J, U. J, Parametric estimating handbook, The International Society of Parametric Analysis (ISPA), 2009.
[14] P. Decker, R. Durand, C. O. May eld, C. McCormack, D. Skinner, G. Perdue, Predicting implementation failure in organization change, Cult. Commun. Con vol., no. 16 (2012) 29.
[15] J.-M. Desharnais, Statistical analysis on the productivity of data processing with development projects using the function point technique, Universite du Quebec a Montreal, 1988.
[16] J.. Dolado, On the problem of the software cost function, Inf. Softw. Technol vol., no. 43 (2001) 61{72.
[17] H. Dong, L. Yang, Kernel-based regression via a novel robust loss function and iteratively reweighted least squares, Knowl. Inf. Syst vol., no. 43 (2001) 61{72.
[18] M.B. Dowlatshahi, V. Derhami, H. Nezamabadi-Pour, Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization, Iran. J. Fuzzy Syst.vol., no.6317 (2021) 1149{1172.
[19] M.B. Dowlatshahi, M. Kuchaki Rafsanjani, B.B. Gupta, An energy aware grouping memetic algorithm to schedule the sensing activity in WSNs-based IoT for smart cities, Appl. Soft Comput vol., no. 108 (2021) 107473.
[20] M.B. Dowlatshahi, H. Nezamabadi-Pour, GGSA: A Grouping Gravitational Search Algorithm for data clustering, Eng. Appl. Artif. Intell vol., no. 36 (2014) 114{121.
[21] M.B. Dowlatshahi, H. Nezamabadi-Pour, M. Mashinchi, A discrete gravitational search algorithm for solving combinatorial optimization problems, Inf. Sci vol., no. 258 (2014)94{107.
[22] P. Edinson, L. Muthuraj, Performance Analysis of FCM Based ANFIS and ELMAN Neural Network in Software E ort Estimation, Int. Arab J. Inf. Technol vol., no. 15 (2018).
[23] M.O. Elish, T. Helmy, M.I. Hussain, Empirical Study of Homogeneous and Heterogeneous Ensemble Models for Software Development E ort Estimation, Math. Probl. Eng vol., no. 2013 (2013) 1{21.
[24] F.-L. Fan, J. Xiong, M. Li, G. Wang, On Interpretability of Arti cial Neural Networks: A Survey, IEEE Trans. Radiat. Plasma Med. Sci (2021) 741{760.
[25] G.R. Finnie, G.E. Wittig, J.-M. Desharnais, A comparison of software e ort estimation techniques: Using function points with neural networks, case-based reasoning and regression models, J. Syst. Softw vol., no. 39 (1997) 281{289.
[26] Galorath, D. D, M.W. Evans, Software sizing, estimation, and risk management: when performance is measured performance improves, Auerbach Publications, 2006.
[27] M.R. Garey, D.S. Johnson, COMPUTERS AND INTRACTABILITY: A Guide to the Theory of NP-Completeness, San Francisco: freeman, 1979.
[28] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, Rui Zhang Variable Neighborhood Search, Handbook of metaheuristics. Springer, Cham (2019) 57{97.
[29] P. Hansen, N. Mladenovic, J. Brimberg, J.A.M. Perez, A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models, J. Syst. Softw vol., no. 39 (1997) 281{289.
[30] A. Hashemi, M. Bagher Dowlatshahi, H. Nezamabadi-pour, VMFS: A VIKOR-based multi-target feature selection, Expert Syst. Appl (2021) 115224.
[31] A. Hashemi, M. Bagher Dowlatshahi, H. Nezamabadi-pour, MFS-MCDM: Multi-label feature selection using multicriteria decision making, Knowledge-Based Syst (2020) 106365.
[32] A. Hashemi, M.B. Dowlatshahi, H. Nezamabadi-pour, Gravitational Search Algorithm, in: Handb. AI-Based Metaheuristics, CRC Press, 2021.
[33] A. Hashemi, M. Bagher Dowlatshahi, H. Nezamabadi-pour, Ensemble of feature selection algorithms: a multi-criteria decision-making approach, Int. J. Mach. Learn. Cybern vol., no. 13 (2022) 49{69.
[34] A. Hashemi, M. Bagher Dowlatshahi, H. Nezamabadi-pour A bipartite matching-based feature selection for multilabel learning, Int. J. Mach. Learn. Cybern vol., no. 12 (2020) 459{475.
[35] P. He, J.-K. Hao, Iterated two-phase local search for the colored traveling salesmen problem, Eng. Appl. Artif. Intell vol., no. 97 (2021) 104018.
[36] D.E. Holland, R.J. Olesen, J.E. Bevins, Multi-objective genetic algorithm optimization of a directionally sensitive radiation detection system using a surrogate transport model, Eng. Appl. Artif. Intell. Cybern vol., no. 104 (2021) 104357.
[37] J.H. Holland, Outline for a Logical Theory of Adaptive Systems, J. ACM vol., no. 9 (1962) 297{314.
[38] J. Huang, Y.-F. Li, M. Xie, An empirical analysis of data preprocessing for machine learning-based software cost estimation, Inf. Softw. Technol vol., no. 67 (2015) 108{127.
[39] R. Israr Ur, A. Zul qar, J. Zahoor, An Empirical Analysis on Software Development E orts Estimation in Machine Learning Perspective, ADCAIJ Adv. Distrib. Comput.Artif. Intell. J vol., no. 10 (2021) 227{240.
[40] G. Bin Huang, C.K. Slew, Extreme learning machine: RBF network case, 8th Int. Conf. Control. Autom. Robot. Vis., IEEE, (Kunming, 2004), 1029{1036.
[41] A. Arabipour, M. Amini, A weighted linear regression model for impercise response, J. Mahani Math. Res vol., no. 3(2014), 1{17.
[42] K. Korenaga, A. Monden, Z. Yucel, Data Smoothing for Software E ort Estimation, 20th IEEE/ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput, (Toyama, 2019), 501{506.
[43] C. Li, X. An, R. Li, A chaos embedded GSA-SVM hybrid system for classi cation, Neural Comput. Appl vol., no. 26 (2015) 713{721.
[44] B. Liang, Y. Zhao, Y. Li, A hybrid particle swarm optimization with crisscross learning strategy, Eng. Appl. Artif. Intell vol., no. 105 (2021) 104418.
[45] Q. Liu, J. Xiao, H. Zhu, Feature selection for software e ort estimation with localized neighborhood mutual information, Cluster Comput vol., no. 22 (2019) 6953{6961.
[46] P. MacDonell, Stephen; Whigham, Data Quality in Empirical Software Engineering: An Investigation of Time-Aware Models in Software E ort Estimation, University of Otago (2016) 1155{1166.
[47] A. Moradbeiky, V. Khatibi, M. Jafari Shahbazzadeh, 3LEE: A 3-Layer E ort Estimator for Software Projects, Int. J. Ind. Electron. Control Optim vol., no. 5 (2022) 31{42.
[48] A.L.I. Oliveira, P.L. Braga, R.M.F. Lima, M.L. Cornelio, GA-based method for feature selection and parameters optimization for machine learning regression applied to software e ort estimation, Inf. Softw. Technol vol., no. 52 (2010) 1155{1166.
[49] K. ONO, M. TSUNODA, A. MONDEN, K. MATSUMOTO, In uence of Outliers on Estimation Accuracy of Software Development E ort, IEICE Trans. Inf. Syst vol., no. 104 (2021) 91{105.
[50] M. Paniri, M.B. Dowlatshahi, H. Nezamabadi-pour, Ant-TD: Ant colony optimization plus temporal di erence reinforcement learning for multi-label feature selection, Swarm Evol. Comput vol., no. 64 (2021) 713{721.
[51] D.A. Pisner, D.M. Schnyer, Support vector machine, Mach. Learn., Elsevier, 2020.
[52] E. Praynlin, Using meta-cognitive sequential learning Neuro-fuzzy inference system to estimate software development e ort, J. Ambient Intell. Humaniz. Comput vol., no. 12 (2021) 8763{8776.
[53] L.H. Putnam, A General Empirical Solution to the Macro Software Sizing and Estimating Problem, IEEE Trans. Softw. Eng vol., no. 4 (1978) 345{361.
[54] F. Qi, X.-Y. Jing, X. Zhu, X. Xie, B. Xu, S. Ying, Software e ort estimation based on open source projects: Case study of Github, Inf. Softw. Technol vol., no. 92 (2017) 145{157.
[55] C.R. Rao, GENERALIZED INVERSE OF A MATRIX AND ITS APPLICATIONS, Theory Stat., University of California Press, 1972.
[56] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A Gravitational Search Algorithm, Inf. Sci vol., no. 179 (2009) 2232{2248.
[57] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, Filter modeling using gravitational search algorithm, Eng. Appl. Artif. Intell vol., no. 24 (2011) 117{122.
[58] M. Relich, P. Pawlewski, A case-based reasoning approach to cost estimation of new product development, Neurocomputing vol., no. 272 (2018) 40{45.
[59] S.H. Samareh Moosavi, V. Khatibi Bardsiri, Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development e ort estimation, Eng. Appl. Artif. Intell vol., no. 60 (2017) 1{15.
[60] J.S. Sartakhti, M.H. Zangooei, K. Mozafari, Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA), Comput. Methods Programs Biomed vol., no. 108 (2012) 570{579.
[61] S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, W. Matusik, Learning the signatures of the human grasp using a scalable tactile glove, Nature vol., no. 569 (2019) 698{702.
[62] P. Suresh Kumar, H.S. Behera, A.K. K, J. Nayak, B. Naik, Advancement from neural networks to deep learning in software e ort estimation: Perspective of two decades, Comput. Sci. Rev vol., no. 38 (2020) 100288.
[63] Z. Tao, L. Huiling, W. Wenwen, Y. Xia, GA-SVM based feature selection and parameter optimization in hospitalization expense modeling, Appl. Soft Comput vol., no. 75 (2019) 323{332.
[64] B. Venkatesh, J. Anuradha, A review of Feature Selection and its methods, Cybern. Inf. Technol vol., no. 19 (2019) 3{26.
[65] Z.H. Wani, S.M.K. Quadri, Arti cial Bee Colony-Trained Functional Link Arti cial Neural Network Model for Software Cost Estimation, Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Springer, Singapore, (2016) 729{741.
[66] J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, A Systematic literature review of machine learning based software development e ort estimation models, Inf. Softw. Technol vol., no. 54 (2012) 41{59.
[67] A. ZAKRANI, M. HAIN, A. IDRI, A review of Feature Selection and its methods, IAES Int. J. Artif. Intell vol., no. 8 (2019) 3{26.
[68] N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, Y. Li, A review of Feature Selection and its methods, Neurocomputing vol., no. 320 (2018) 195{202.
[69] N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, Y. Li, Feature selection with multi-view data: A survey, Inf. Fusion vol., no. 50 (2019) 158{167.
[70] Y. Zhou, J.-K. Hao, Tabu search with graph reduction for nding maximum balanced bicliques in bipartite graphs, Eng. Appl. Artif. Intell vol., no. 77 (2019) 86{97.