Gradient Ricci Bourguignon solitons on perfect fluid space-times

Document Type : Research Paper

Authors

Department of Pure Mathematics, Imam Khomeini International University, Qazvin, Iran

Abstract

The main purpose of the present paper is about characterizing the properties of the perfect fluid space-time that admits the gradient Ricci-Bourguignon soliton. This gives some results about the stability of the energy-momentum tensor and also under some conditions pursues that a perfect fluid space-time is Ricci symmetric. As a special case, when a perfect fluid space-time is equipped with the Ricci-Bourguignon soliton which has Ricci biconformal vector field, we show that the metric of this space is Einstein.

Keywords

Main Subjects


1] Alas, L., Romero, A., & Sanchez, M. (1995). Uniqeness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. Gen. Relat. Gravit. 27, 71-84. https://doi.org/10.1007/BF02105675
[2] Alas, L., Romero, A., & Sanchez, M. (1995). Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. In Geometry and Topology of sub-manifolds VII (River Edge NJ, USA, World Scienti c) 67,
https://doi.org/10.48550/arXiv.1109.6477
[3] Azami, A. (2021). Complete Ricci-Bourguignon solitons on Finsler manifolds. Journal of Finsler Geometry and its Applications, pp. 108-117. https://doi.org/10.22098/jfga.2021.1268
[4] Barbosa, E., & Ribeiro, E. (2013). On conformal solutions of the Yamabe ow. Arch. Math. pp. 79-89. https://doi.org/10.1007/s00013-013-0533-0
[5] Blaga, A.M. (2020). Solitons and geometrical structures in a perfect uid spacetime. Rocky Mountain J. Math. 50, 41-53. https://doi.org/10.48550/arXiv.1705.04094
[6] Bourguignon, J. (1981). Ricci curvature and Einstein metrics. Global di erential geometry and global analysis, pp. 42-63. Part of the Lecture Notes in Mathematics book series (LNM,volume 838).
[7] Cao, H., Sun, X., & Zhang, Y. (2012). On the structure of gradient Yamabe solitons. Math. Res. Lett. 19, no. 04, 767-774. https://doi.org/10.48550/arXiv.1108.6316
[8] Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., & Mazzieri, L. (2017). The Ricci-Bourguignon 
ow. Paci c J. Math. 286, pp. 337-370. https://doi.org/10.48550/arXiv.1507.00324
[9] Catio, G., Mazzieri, L., & Mongodi, S. (2015). Rigidity of gradient Einstein shrinkers. Commun. Contemp. Math. 17, https://doi.org/10.48550/arXiv.1307.3131
[10] Catino, G., & Mazzieri, L. (2016). Gradient Einstein solitons. Nonlinear Anal. 132, 66-94. https://doi.org/10.48550/arXiv.1201.6620
[11] Chaki, M.C., & Guha, S. (1996). Spacetime with covariant constant energy momentum tensor. Int. J. Theor Phys. 35 (5), 1027-1032. https://doi.org/10.1007/BF02302387
[12] Chand De, U., Sardar, A., & Sarkar, A. (2021). Some conformal vector  elds and conformal Ricci solitons on N (k)-contact metric manifolds, AUT Journal of Mathematics and Computing, 2(1) 61-71. https://doi.org/10.22060/ajmc.2021.19220.1043
[13] Chaubey, S.K. (2020). Characterization of perfect uid spacetimes admitting gradient -Ricci and gradient Einstein solitons. Journal of Geometry and Physics, Vol 162, https://doi.org/10.1016/j.geomphys.2020.104069
[14] Chen, B.Y. (2011). Pseudo-Riemannian Geometry, -invariants and Applications. (World Scienti c), https://doi.org/10.1142/8003
[15] De, U.C., Chaubey, S.K., & Shenawy, S.(2021). Perfect uid spacetimes and Yamabe solitons. Journal of Mathematical Physics, (62) 032501, https://doi.org/10.1063/5.0033967
[16] De, U.C., & Velimirovic, L. (2015). Spacetimes with semisymmetric energy momentum tensor. Int. J. Theor Phys. 54, pp. 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
[17] Dwivedi, Sh. (2020). Some results on Ricci-Bourguignon and Ricci-Bourguignon almost solitons. Cambridge University Press: Vol 64, 3, 591-604. https://doi.org/10.48550/arXiv.1809.11103
[18] Ghosh, A. (2020). Yamabe soliton and Quasi Yamabe soliton on Kenmotsu manifold. Mathematica Slovaca, pp. 151-160. https://doi.org/10.1515/ms-2017-0340
[19] Guilfoyle, B.S., & Nolan, B.C. (1998). Yang's gravitational theory. Gen. Relativ. Gravitation, 30 (3), 473-495. https://doi.org/10.48550/arXiv.gr-qc/9801023
[20] Guler, S., & Crasmareanu, M. (2019). Ricci-Yamabe maps for Riemannian ow and their volume variation and volume entropy. Tunk. J. Math. pp. 2361-2641. http://doi.org/10.3906/mat-1902-38
[21] Gornits, T. (2017). Why  + 3p = 0 is the equation of state of the univers? http://doi.org/10.13140/RG.2.2.27468.00649.
[22] Hamilton, R.S. (1982). Three Manifold with positive Ricci curvature. J. Di erential Geom. pp. 255-306. http://doi.org/10.4310/jdg/1214436922
[23] Hamilton, R.S. (1988). The Ricci ow on surfaces. Contemporary Mathematics. pp. 237-261. https://doi.org/10.1090/conm/071/954419
[24] Mantica, C.A., De, U.C., Suh, Y.J., & Molinari, L.G. (2019). Perfect uid spacetime with harmonic generalized curvature tensor. Osaka J.Math. 56, 173-182. https://doi.org/10.18910/71142
[25] Mantica, C.A., Molinari, L.G., & De, U.C. (2016). A condition for a perfect-uid space-time to be a generalized Robertson-Walker space-time. J. Math Phys. 57, 022508. https://doi.org/10.48550/arXiv.1508.05883
[26] O'Neill, B. (1983). Semi-Riemannian Geometry with Applications to Relativity (Academic Press, New York).
[27] Patra, D.S., Ali, A., & Mofarreh, F.(2022). Characterizations of Ricci-Bourguignon almost solitons on pseudo-Riemannian manifolds. Mediterr. J. Math. 19, 176. https://doi.org/10.1007/s00009-022-02085-4
[28] Roy, S., Dey, S., & Bhattacharyya, A. (2021). Geometrical structure in a perfect uid spacetime with conformal Ricci-Yamabe soliton. https://doi.org/10.48550/arXiv.2105.11142.
[29] Sameh, S., Chand, D.U., Turki, N.B., Suliman, A., & Abdelhameed, S.A. (2021). Investigation pf pseudo-Ricci symmetric spacetime in Gray's subspace, Journal of mathematics, Cairo. https://doi.org/10.1155/2021/6188097
[30] Siddiqui, A.N., & Siddiqi, M.D. (2021). Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect uid spacetime. Balkan Journal of Geometry and its Applications, Vol.26, No. 2, pp. 126-138. t: https://www.researchgate.net/publication/350062360
[31] Sharma, R., & Ghosh, A. (2010). Perfect uid space-time whose energy-momentum tensor is conformal Killing. J. Math. Phys. 51, 022504-5. https://doi.org/10.1063/1.3319562
[32] Stephani, H. (1982). General Relativity-An Introduction to the theory of Gravitational  eld. Combridge Uiversity Press, Combridge.
[33] Zengin, F.O. (2012). M-projectively at spacetimes. Math. Reports 14, 363-370.