Some results on Drazin-Dagger matrices, reciprocal matrices, and conjugate EP matrices

Document Type : Research Paper

Authors

1 Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

2 Mahani Mathematical Research Institute, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, a class of matrices, namely, Drazin-dagger matrices, in which the Drazin inverse and
the Moore-Penrose inverse commute, is introduced. Also, some properties of the generalized inverses of these matrices, are investigated. Moreover, some results about the Moore-Penrose inverse, the Drazin inverse and the numerical range of some reciprocal matrices are obtained. In particular, the relations between reciprocal matrices, Drazin-Dagger matrices and star order are established. Also, some properties of the generalized inverses of the conjugate EP matrices are studied. To illustrate the results, some numerical examples are also given.

Keywords

Main Subjects


[1] Aghamollaei, Gh., Mortezaei, M., & Nourollahi, M.A. On EP matrices, partial isometry matrices and their numerical range, Quaest. Math., to appear.
[2] Ben-Israel, A., & Greville, T.N.E. (2003) Generalized Inverses: Theory and Applications, Second ed., Springer, New York.
[3] Campbell, S.L., Meyer, C.D., & Rose, N.J. (1976) Applications of the Drazin inverse to linear systems of di erential equation with singular constant coecients, SIAM J. Appl. Math., 31 (3), 411 - 425. https://doi.org/10.1137/0131035
[4] Chien, M.T., Yeh, L., & Yeh, Y.T. (1998) On geometric properties of the numerical range, Linear Algebra Appl., 274 (1-3), 389 - 410. https://doi.org/10.1016/S0024-3795(97)00373-X
[5] Cvetkovic Ilic, D.S., & Wei, Y. (2017) Algebraic Properties of Generalized Inverses, Springer, Singapore.
[6] Eiermann, M. (1993) Field of values and iterative methods, Linear Algebra Appl., 180, 167 - 197. https://doi.org/10.1016/0024-3795(93)90530-2
[7] Hawkins, D.M., & Bradu, D. (1990) Application of the Moore-Penrose inverse of a data matrix in multiple regression, Linear Algebra Appl., 127, 403 - 425. https://doi.org/10.1016/0024-3795(90)90353-E
[8] Hernandez, A., Lattanzi, M., Thome, N., & Urquiza, F. (2012) The star partial order and the eigenprojection at 0 on EP matrices, Appl. Math. Comput., 218 (21), 10669 -10678. https://doi.org/10.1016/j.amc.2012.04.034
[9] Horn, R., & Johnson, C.R. (1991) Topics in Matrix Analysis, Cambridge University Press, New York.
[10] Malik, S.B., Rueda, L., & Thome, N. (2016) The class of m-EP and m-normal matrices, Linear Multilinear Algebra, 64 (11), 2119 - 2132. https://doi.org/10.1080/03081087.2016.1139037
[11] Malik, S.B., & Thome, N. (2014) On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226, 575 - 580. https://doi.org/10.1016/j.amc.2013.10.060
[12] Meenakshi, A.R., & Indira, R. (1997) On conjugate EP matrices, Kyungpook Math. J., 37, 67 - 72.
[13] Meenakshi, A.R., & Indira, R. (2005) Some remarks on generalized inverses of conjugate EP matrix, Bull. Malays. Math. Sci. Soc., 28 (1), 61 - 65.
[14] Mehdipour, M., & Salemi, A. (2018) On a new generalized inverse of matrices, Linear Multilinear Algebra, 66 (5), 1046 - 1053. https://doi.org/10.1080/03081087.2017.1336200
[15] Mitra, S.K., Bhimasankaram, P., & Malik, S.B. (2010) Matrix Partial Orders, Shorted Operators and Applications, World Scienti c Publishing Co., Singapore.
[16] Mosic, D. (2020) Drazin-Star and Star-Drazin matrices, Results Math., 75 (2), 1 - 21. https://doi.org/10.1007/s00025-020-01191-7
[17] Mosic, D. (2018) The CMP inverse for rectangular matrices, Aequat. Math. 92 (4), 649 - 659. https://doi.org/10.1007/s00010-018-0570-7
[18] Pavlkova, S., & Sevcovic, D. (2023) On the Moore-Penrose pseudo-inversion of block symmetric matrices and its application in the graph theory, Linear Algebra Appl., 673, 280 - 303. https://doi.org/10.1016/j.laa.2023.05.016
[19] Saaty, T.L. (1994) Fundamentals of Decisions Making and Priority and Theory with the Analytical Hierarchy Process, RWS Publications, Pittsburgh.
[20] Zhang, X., & Chen, G. (2006) The computation of Drazin inverse and its application in Markov chains, Appl. Math. Comput., 183 (1), 292 - 300. https://doi.org/10.1016/j.amc.2006.05.076