[1] Aghamollaei, Gh., Mortezaei, M., & Nourollahi, M.A. On EP matrices, partial isometry matrices and their numerical range, Quaest. Math., to appear.
[2] Ben-Israel, A., & Greville, T.N.E. (2003) Generalized Inverses: Theory and Applications, Second ed., Springer, New York.
[3] Campbell, S.L., Meyer, C.D., & Rose, N.J. (1976) Applications of the Drazin inverse to linear systems of di erential equation with singular constant coecients, SIAM J. Appl. Math., 31 (3), 411 - 425.
https://doi.org/10.1137/0131035
[5] Cvetkovic Ilic, D.S., & Wei, Y. (2017) Algebraic Properties of Generalized Inverses, Springer, Singapore.
[8] Hernandez, A., Lattanzi, M., Thome, N., & Urquiza, F. (2012) The star partial order and the eigenprojection at 0 on EP matrices, Appl. Math. Comput., 218 (21), 10669 -10678.
https://doi.org/10.1016/j.amc.2012.04.034
[9] Horn, R., & Johnson, C.R. (1991) Topics in Matrix Analysis, Cambridge University Press, New York.
[12] Meenakshi, A.R., & Indira, R. (1997) On conjugate EP matrices, Kyungpook Math. J., 37, 67 - 72.
[13] Meenakshi, A.R., & Indira, R. (2005) Some remarks on generalized inverses of conjugate EP matrix, Bull. Malays. Math. Sci. Soc., 28 (1), 61 - 65.
[15] Mitra, S.K., Bhimasankaram, P., & Malik, S.B. (2010) Matrix Partial Orders, Shorted Operators and Applications, World Scienti c Publishing Co., Singapore.
[18] Pavlkova, S., & Sevcovic, D. (2023) On the Moore-Penrose pseudo-inversion of block symmetric matrices and its application in the graph theory, Linear Algebra Appl., 673, 280 - 303.
https://doi.org/10.1016/j.laa.2023.05.016
[19] Saaty, T.L. (1994) Fundamentals of Decisions Making and Priority and Theory with the Analytical Hierarchy Process, RWS Publications, Pittsburgh.