Generalized Cesaro tensor and it's properties

Document Type : Research Paper

Authors

Department of Mathematics, University of Hormozgan, P.O. BOX 3995, Bandar Abbas, Iran

Abstract

Recently, infinite and finite dimensional generalized Hilbert tensors have been introduced. In this paper, the authors further introduce infinite and finite dimensional generalized Cesaro tensors as a generalization of Cesaro matrices and discuss the properties of these structured tensors. Next, some  upper bounds of $Z_{1}$-spectral radius of generalized Cesaro tensors  and  generalized Hilbert tensors are given,  which improves the existing ones. Finally, we obtain conditions under which a generalized Cesaro tensor is column sufficient tensor.

Keywords

Main Subjects


[1] Brown, A., Halmos, P.R., & Shields, A.L. (1965). Cesaro operators, Acta sci. Math. (Szeged), 26, 125{137.
[2] Chang, K.C., & Zhang, T. (2013). On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors, J. Math. Anal. Appl., 408 , 525{540. https://doi.org/10.1016/j.jmaa.2013.04.019.
[3] Chen, H., Li, G., & Qi, L. (2016). Further results on Cauchy tensors and Hankel tensors, Appl. Math. Comput., 275 50{62. https://doi.org/10.1016/j.amc.2015.11.051.
[4] Chen, H., Qi, L., & Song, Y. (2016). Column sucient tensors and tensor complementarity problems, Front. Math. China., 13 (2018), 255{276. https://doi.org/10.1007/s11464-018-0681-4.
[5] Duttaa, A., Deba, R., & Das, A. K. (2022). On some properties of !-uniqueness in tensor complementarity problem, https://arxiv.org/pdf/2203.08582.
[6] Frazer, H. (1946). Note on Hilbert's Inequality, J. London Math. Soc., 1, 7-9. https://doi.org/10.1112/jlms/s1-21.1.7.
[7] Ingham, A.E. (1936). A note on Hilbert's Inequality, J. London Math. Soc., 1, 237{240. https://doi.org/10.1016/S0096-3003(02)00107-8.
[8] Kriete, T.L., & Trutt, D. (1971). The Cesaro operator in l2 is subnormal, Amer. J. Math., 93, 215{225.
[9] Li, W., Liu, D., & Vong, S.W. (2015). Z-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483, 182{199. https://doi.org/10.1016/j.laa.2015.05.033.
[10] Li, W., & Ng, M.K. (2014). On the limiting probability distribution of a transition probability tensor, Linear and Multilinear Algebra, 62, 362{385. https://doi.org/10.1080/03081087.2013.777436.
[11] Lim, L. H., (2005). Singular values and eigenvalues of tensors: A variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 05, vol. 1, IEEE Computer Society Press, Piscataway, NJ 129{132. https://doi.org/10.48550/arXiv.math/0607648.
[12] Mei, W., & Song, Y. (2017). In nite and  nite dimensional generalized Hilbert tensors, Linear Algebra Appl., 532, 8{24. https://doi.org/10.1016/j.laa.2017.05.052.
[13] Meng, J., & Song, Y. (2020). Upper bounds for Z1-eigenvalues of generalized Hilbert tensors, J. Ind. Manag. Optim, 16, 911{918. https://doi.org/10.48550/arXiv.1712.04253
[14] Qi, L., & Luo, Z. (2017). Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics. [15] Qi, L. (2015). Hankel tensors: Associated Hankel matrices and Vandermonde decomposition, Commun. Math. Sci., 13, 113{125. https://doi.org/10.48550/arXiv.1310.5470.
[16] Qi, L. (2005). Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput, 40, 1302{1324. https://doi.org/10.1016/j.jsc.2005.05.007.
[17] Song, Y., & Qi, L. (2014). In nite and  nite dimensional Hilbert tensors, Linear Algebra Appl., 451, 1{14. https://doi.org/10.48550/arXiv.1401.4966.
[18] Rhaly, H.C. (1984). Generalized Cesaro matrices, Cand. Math. Bull., 27, 417{422.
[19] Wei, Y., & Ding, W. (2016). Theory and computation of tensors: multi-dimensional arrays, Academic Press.