[1] Bazm, S. (2015). Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations. J. Comput. Appl. Math., 275, 44-60.
https://doi.org/10.1016/j.cam.2014.07.018
[2] Bhrawy, AH, Tohidi, E., & Soleymani, F. (2012). A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-di erential equations with piecewise intervals. Appl. Math. Comput., 219(2), 482-497.
https://doi.org/10.1016/j.amc.2012.06.020
[3] Bicer, GG, Ozturk, Y., & Gulsu, M. (2018). Numerical approach for solving linear Fredholm integro-di erential equation with piecewise intervals by Bernoulli polynomials. Int. J. Comput. Math., 95(10), 2100-2111.
https://doi.org/10.1080/00207160.2017.1366458
[4] Brunner, H. (1990). On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods. SIAM J. Numer. Anal., 27(4), 987-1000.
https://doi.org/10.1137/0727057
[5] Dehghan, M., & Salehi, R. (2012). The numerical solution of the nonlinear integrodi erential equations based on the meshless method. J. Comput. Appl. Math., 236(9), 2367-2377.
https://doi.org/10.1016/j.cam.2011.11.022
[8] Hesameddini, E., & Shahbazi, M. (2022). Application of Bernstein polynomials for solving Fredholm integro-di erential-di erence equations. Appl. Math. J. Chin. Univ., 37(4), 475-493.
https://doi.org/10.1007/s11766-022-3620-9
[9] Hesameddini, E., & Shahbazi, M. (2017). Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstein Block-Pulse functions. J. Comput. Appl. Math., 315, 182-194.
https://doi.org/10.1016/j.cam.2016.11.004
[10] Maleknejad, K., Basirat, B., & Hashemizadeh, E. (2012). A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-di erential equations. Math. Comput. Model., 55(3-4), 1363-1372.
https://doi.org/10.1016/j.mcm.2011.10.015
[11] Maleknejad, K., & Mahmoudi, Y. (2003). Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-di erential equations. Appl. Math. Comput., 145(2-3), 641-653.
https://doi.org/10.1016/S0096-3003(03)00152-8
[13] Matinfar, M., Abdollahi Lashaki, H., & Akbari, M. (2017). Numerical approximation based on the Bernoulli polynomials for solving Volterra integro-di erential equations of a high order. Math. Rese., 2(3), 19-32.
https://doi.org/10.29252/mmr.2.3.19
[15] Ordokhani, Y., & Mohtashami, MJ (2010). Approximate solution of nonlinear Fredholm integro-di erential equations with time delay by using Taylor method. J. Sci. TMU., 9(1), 73-84.
[17] Rohaninasab, N., Maleknejad, K., & Ezzati, R. (2018). Numerical solution of high-order Volterra-Fredholm integro-di erential equations by using Legendre collocation method. Appl. Math. Comput., 328, 171-188.
https://doi.org/10.1016/j.amc.2018.01.032
[18] Saadatmandi, A., & Dehghan, M. (2010). Numerical solution of the higher-order linear Fredholm integro-di erential-di erence equation with variable coecients. Comput. Math. with Appl., 59(8), 2996-3004.
https://doi.org/10.1016/j.camwa.2010.02.018
[19] Saberi-Nadja , J., & Ghorbani, A. (2009). He's homotopy perturbation method: an e ective tool for solving nonlinear integral and integro-di erential equations. Comput. Math. with Appl., 58(11-12), 2379-2390.
https://doi.org/10.1016/j.camwa.2009.03.032
[20] Venkatesh, SG, Ayyaswamy, SK, & Raja Balachander, S. (2012). Legendre approximation solution for a class of high-order Volterra integro-di erential equations. Ain Shams Eng. J., 3(4), 417-422.
https://doi.org/10.1016/j.asej.2012.04.007
[23] Yalcnbas, S., & Sezer, M. (2000). The approximate solution of high-order linear Volterra-Fredholm integro-di erential equations in terms of Taylor polynomials. Appl. Math. Comput., 112(2-3), 291-308.
https://doi.org/10.1016/s0096-3003(99)00059-4
[24] Yldz, G., Tnaztepe, G., & Sezer, M. (2020). Bell polynomial approach for the solutions of Fredholm integro-di erential equations with variable coecients. Comp. Model. Eng. Sci., 123(3), 973-993.
https://doi.org/10.32604/cmes.2020.09329
[29] Yuzbas, S., Gok, E., & Sezer, M. (2013), Muntz-Legendre polynomial solutions of linear delay Fredholm integro-di erential equations and residual correction. Math. Comput. Appl., 18(3), 476-485.
https://doi.org/10.3390/mca18030476
[30] Yuzbas, S., & Ismailov, N. (2018). An operational matrix method for solving linear Fredholm-Volterra integro-di erential equations. Turkish J. Math., 42(1), 243-256.
https://doi.org/10.3906/mat-1611-126
[31] Yuzbas, S., & Karacayir, M. (2018). A numerical approach for solving high-order linear delay Volterra integro-di erential equations. Int J Comput Methods, 15(5), 1850042.
https://doi.org/10.1142/S0219876218500421
[32] Yuzbas, S., Sahn, N., & Sezer, M. (2011). Bessel polynomial solutions of high-order linear Volterra integro-di erential equations. Comput. Math. with Appl., 62(4), 1940-1956.
https://doi.org/10.1016/j.camwa.2011.06.038
[33] Yuzbas, S., Sahn, N., & Yldirim, A. (2012). A collocation approach for solving high-order linear Fredholm-Volterra integro-di erential equations. Math Comput Model, 55(3-4), 547-563.
https://doi.org/10.1016/j.mcm.2011.08.032
[34] Yuzbas, S., & Yldirim, G. (2020). Pell-Lucas collocation method to solve high-order linear Fredholm-Volterra integro-di erential equations and residual correction. Turkish J. Math., 44(4), 1065-1091.
https://doi.org/10.3906/mat-2002-55