An operational collocation based on the Bell polynomials for solving high order Volterra integro-differential equations

Document Type : Research Paper

Authors

1 Department of Mathematics, Shiraz University of Technology, Shiraz, Iran

2 Department of Basic Sciences, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran

Abstract

In this paper, an operational matrix method based on the Bell polynomials  has been presented to find approximate solutions of high-order Volterra integro-differential equations. This method  uses a simple computational manner to obtain a quite acceptable approximate solution. The main characteristic behind this method lies in the fact that on the one hand, the problem will be reduced to a system of algebraic equations and on the other hand, the efficiency and accuracy of the Bell polynomials  for solving these equations are acceptable. The convergence analysis of  this method will be shown by preparing some theorems. Moreover, we will obtain an estimation of the error bound for this algorithm. Finally, some examples are presented to illustrate the applicability, efficiency and accuracy of this  scheme in comparison with some  other well-known methods such as Legendre, Bernoulli, Taylor and Bessel polynomial algorithms

Keywords

Main Subjects


[1] Bazm, S. (2015). Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations. J. Comput. Appl. Math., 275, 44-60. https://doi.org/10.1016/j.cam.2014.07.018
[2] Bhrawy, AH, Tohidi, E., & Soleymani, F. (2012). A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-di erential equations with piecewise intervals. Appl. Math. Comput., 219(2), 482-497. https://doi.org/10.1016/j.amc.2012.06.020
[3] Bicer, GG,  Ozturk, Y., & Gulsu, M. (2018). Numerical approach for solving linear Fredholm integro-di erential equation with piecewise intervals by Bernoulli polynomials. Int. J. Comput. Math., 95(10), 2100-2111. https://doi.org/10.1080/00207160.2017.1366458
[4] Brunner, H. (1990). On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods. SIAM J. Numer. Anal., 27(4), 987-1000. https://doi.org/10.1137/0727057
[5] Dehghan, M., & Salehi, R. (2012). The numerical solution of the nonlinear integrodi  erential equations based on the meshless method. J. Comput. Appl. Math., 236(9), 2367-2377. https://doi.org/10.1016/j.cam.2011.11.022
[6] Fakhar-Izadi, F., & Dehghan, M. (2011). The spectral methods for parabolic Volterra integro-di erential equations. J. Comput. Appl. Math., 235(14), 4032-4046. https://doi.org/10.1016/j.cam.2011.02.030
[7] Gasca, M., & Sauer, T. (2001). On the history of multivariate polynomial interpolation. Numerical Analysis: Historical Developments in the 20th Century. 135-147. https://doi.org/10.1016/B978-0-444-50617-7.50007-0
[8] Hesameddini, E., & Shahbazi, M. (2022). Application of Bernstein polynomials for solving Fredholm integro-di erential-di erence equations. Appl. Math. J. Chin. Univ., 37(4), 475-493. https://doi.org/10.1007/s11766-022-3620-9
[9] Hesameddini, E., & Shahbazi, M. (2017). Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstein Block-Pulse functions. J. Comput. Appl. Math., 315, 182-194. https://doi.org/10.1016/j.cam.2016.11.004
[10] Maleknejad, K., Basirat, B., & Hashemizadeh, E. (2012). A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-di erential equations. Math. Comput. Model., 55(3-4), 1363-1372. https://doi.org/10.1016/j.mcm.2011.10.015
[11] Maleknejad, K., & Mahmoudi, Y. (2003). Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-di erential equations. Appl. Math. Comput., 145(2-3), 641-653. https://doi.org/10.1016/S0096-3003(03)00152-8
[12] Mason, JC, & Handscomb, DC (2002). Chebyshev Polynomials. CRC Press LLC. https://doi.org/10.1201/9781420036114
[13] Matinfar, M., Abdollahi Lashaki, H., & Akbari, M. (2017). Numerical approximation based on the Bernoulli polynomials for solving Volterra integro-di erential equations of a high order. Math. Rese., 2(3), 19-32. https://doi.org/10.29252/mmr.2.3.19
[14] Mirzaee, F. (2017). Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials. Comput. Methods Di er. Equ., 5(2), 88-102. https://dorl.net/dor/20.1001.1.23453982.2017.5.2.1.1
[15] Ordokhani, Y., & Mohtashami, MJ (2010). Approximate solution of nonlinear Fredholm integro-di erential equations with time delay by using Taylor method. J. Sci. TMU., 9(1), 73-84.
[16] Rebenda, J. (2019). An application of Bell polynomials in numerical solving of nonlinear di erential equations. arXiv preprint arXiv:1901.10418, 1-10. https://doi.org/10.48550/arXiv.1901.10418
[17] Rohaninasab, N., Maleknejad, K., & Ezzati, R. (2018). Numerical solution of high-order Volterra-Fredholm integro-di erential equations by using Legendre collocation method. Appl. Math. Comput., 328, 171-188. https://doi.org/10.1016/j.amc.2018.01.032
[18] Saadatmandi, A., & Dehghan, M. (2010). Numerical solution of the higher-order linear Fredholm integro-di erential-di erence equation with variable coecients. Comput. Math. with Appl., 59(8), 2996-3004. https://doi.org/10.1016/j.camwa.2010.02.018
[19] Saberi-Nadja , J., & Ghorbani, A. (2009). He's homotopy perturbation method: an e ective tool for solving nonlinear integral and integro-di erential equations. Comput. Math. with Appl., 58(11-12), 2379-2390. https://doi.org/10.1016/j.camwa.2009.03.032
[20] Venkatesh, SG, Ayyaswamy, SK, & Raja Balachander, S. (2012). Legendre approximation solution for a class of high-order Volterra integro-di erential equations. Ain Shams Eng. J., 3(4), 417-422. https://doi.org/10.1016/j.asej.2012.04.007
[21] Wazwaz, AM (2011). Linear and Nonlinear Integral Equations. Berlin: Springer. https://doi.org/10.1007/978-3-642-21449-3-14
[22] Wheeler, FS (1987). Bell polynomials. Acm Sigsam Bulletin, 21(3), 44-53. https://doi.org/10.1145/29309.29317
[23] Yalcnbas, S., & Sezer, M. (2000). The approximate solution of high-order linear Volterra-Fredholm integro-di erential equations in terms of Taylor polynomials. Appl. Math. Comput., 112(2-3), 291-308. https://doi.org/10.1016/s0096-3003(99)00059-4
[24] Yldz, G., Tnaztepe, G., & Sezer, M. (2020). Bell polynomial approach for the solutions of Fredholm integro-di erential equations with variable coecients. Comp. Model. Eng. Sci., 123(3), 973-993. https://doi.org/10.32604/cmes.2020.09329
[25] Yuzbas, S. (2022). A new Bell function approach to solve linear fractional di erential equations. Appl. Numer. Math., 174, 221-235. https://doi.org/10.1016/j.apnum.2022.01.014
[26] Yuzbas, S. (2022). Fractional Bell collocation method for solving linear fractional integro-di erential equations. Math. Sci., 1-12. https://doi.org/10.1007/s40096-022-00482-0
[27] Yuzbas, S. (2014). Laguerre approach for solving pantograph-type Volterra integro-di erential equations. Appl. Math. Comput., 232, 1183-1199. https://doi.org/10.1016/j.amc.2014.01.075
[28] Yuzbas, S. (2017). Shifted Legendre method with residual error estimation for delay linear Fredholm integro-di erential equations. J. Taibah Univ. Sci., 11(2), 344-352. https://doi.org/10.1016/j.jtusci.2016.04.001
[29] Yuzbas, S., Gok, E., & Sezer, M. (2013), Muntz-Legendre polynomial solutions of linear delay Fredholm integro-di erential equations and residual correction. Math. Comput. Appl., 18(3), 476-485. https://doi.org/10.3390/mca18030476
[30] Yuzbas, S., & Ismailov, N. (2018). An operational matrix method for solving linear Fredholm-Volterra integro-di erential equations. Turkish J. Math., 42(1), 243-256. https://doi.org/10.3906/mat-1611-126
[31] Yuzbas, S., & Karacayir, M. (2018). A numerical approach for solving high-order linear delay Volterra integro-di erential equations. Int J Comput Methods, 15(5), 1850042. https://doi.org/10.1142/S0219876218500421
[32] Yuzbas, S., Sahn, N., & Sezer, M. (2011). Bessel polynomial solutions of high-order linear Volterra integro-di erential equations. Comput. Math. with Appl., 62(4), 1940-1956. https://doi.org/10.1016/j.camwa.2011.06.038
[33] Yuzbas, S., Sahn, N., & Yldirim, A. (2012). A collocation approach for solving high-order linear Fredholm-Volterra integro-di erential equations. Math Comput Model, 55(3-4), 547-563. https://doi.org/10.1016/j.mcm.2011.08.032
[34] Yuzbas, S., & Yldirim, G. (2020). Pell-Lucas collocation method to solve high-order linear Fredholm-Volterra integro-di erential equations and residual correction. Turkish J. Math., 44(4), 1065-1091. https://doi.org/10.3906/mat-2002-55