A fixed point method for the stability of functional equations in probabilistic normed quasi-linear spaces

Document Type : Research Paper

Authors

Department of Mathematical Sciences, Yazd University, Yazd, Iran

Abstract

In this article, we define probabilistic normed quasi-linear spaces and provide some introductions and examples to clarify the structure of these spaces. We then investigate the generalized Hyers-Ulam stability of the (additive) Cauchy functional equation in probabilistic normed quasi-linear spaces by using a version of the fixed point theorem.

Keywords

Main Subjects


[1] Agarwal, R. P., Meehan, M., & O'Regan, D. (2001). Fixed Point Theory and Applications, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511543005
[2] Alsina, C. (1987). On the stability of a functional equation arising in probabilistic normed spaces, General Inequalities 5 (Birkhauser, Basel), 263-271. https://doi.org/10.1007/978-3-0348-7192-1 20
[3] Aseev, S. M. (1985). Quasilinear operators and their application in the theory of multivalued mappings, Trudy Mat. Inst. Steklov, 276, 25-52.
[4] Baker, J. A. (1991). The stability of certain functional equations, Proc. Amer. Math. Soc., 112, 729-732. https://doi.org/10.2307/2048695
[5] Benzarouala, Ch., Brzdcek, J., & Oubbi, L. (2023). A  xed point theorem and Ulam stability of a general linear functional equation in random normed spaces, J. Fixed Point Theory Appl., 25, Paper No. 33. https://doi.org/10.1007/s11784-022-01034-8
[6] Brzdek, J., Fechner, W., Moslehian, M.S., & Sikorska, J. (2015). Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal., 9, 278-326. https://doi.org/10.15352/bjma/09-3-20
[7] Chang, S. H., Cho, Y., & Kang, S. (2001). Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, New York.
[8] Cho, Y. J., Rassias, T. M., & Saadati, R. (2013). Stability of Functional Equations in Random Normed Spaces, Springer Optimization and Its Applications, 86, Springer, Berlin. https://doi.org/10.1007/978-1-4614-8477-6
[9] Dehghanizade, R., & Modarres, S.M.S. (2021). Quotient spaces on quasilinear spaces, Int. J. Nonlinear Anal. Appl., 12, 781-792. http://dx.doi.org/10.22075/ijnaa.2021.20279.2142
[10] Diaz, J. B., & Margolis, B. (1968). A  xed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74, 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
[11] Gajda, Z. (1991). On stability of additive mappings, Int. J. Math. Math, Sci., 14, 431-434. https://doi.org/10.1155/S016117129100056X
[12] Gavruta, P. (1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184, 431-436. https://doi.org/10.1006/jmaa.1994.1211
[13] Hazarika, B., Srivastava, H. M., Arab, R., & Rabbani, M. (2019). Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to  nd solution, Appl. Math. Comput., 360, 131-146. https://doi.org/10.1016/j.amc.2019.04.058
[14] Hyers, D. H. (1941). On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27, 222-224. https://doi.org/10.1073/pnas.27.4.222
[15] Hyers, D. H., Isac, G., & Rassias, Th. M. (1998). Stability of Functional Equations in Several Variables, Birkhauser, Boston. https://doi.org/10.1007/978-1-4612-1790-9
[16] Jung, S.-M. (2011). Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York. https://doi.org/10.1007/978-1-4419-9637-4
[17] Jung, S.-M., Popa, D., & Rassias, M. Th. (2014). On the stability of the linear functional equation in a single variable on complete metric groups, J. Glob. Optim., 59, 165-171. https://doi.org/10.48550/arXiv.1512.04709
[18] Kannappan, Pl. (2009). Functional Equations and Inequalities with Applications, Springer, New York. https://doi.org/10.1007/978-0-387-89492-8
[19] Mihet, D., & Radu, V. (2008). On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343, 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
[20] Mihet, D., & Saadati, R. (2011). On the stability of the additive Cauchy functional equation in random normed spaces, Appl. Math. Lett., 24, 2005-2009. https://doi.org/10.1016/j.aml.2011.05.033
[21] Park, C., & Rassias, Th. M. (2009). Fixed points and stability of the Cauchy functional equation, Aust. J. Math. Anal. Appl., 6, 1-9. https://doi.org/10.1155/2009/809232
[22] Radu, V. (2003). The  xed point alternative and the stability of functional equations, Fixed Point Theory, 4, 91-96. https://api.semanticscholar.org/CorpusID:56040530
[23] Rassias, Th. M. (1978). On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, 297-300. https://doi.org/10.2307/2042795
[24] Rassias, Th. M. (2000). On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251, 264-284. https://doi.org/10.1006/jmaa.2000.7046
[25] Schweizer, B., & Sklar, A. (1983). Probabilistic Metric Spaces, Elsevier North-Holland, New York.
[26] Srivastava, H. M., Das, A., Hazarika, B., & Mohiuddine, S. A. (2019). Existence of solution for non-linear functional integral equations of two variables in Banach algebra, Symmetry, 11(5)., 674, 2715-2737. https://doi.org/10.3390/sym11050674
[27] Srivastava, H. M., Deep, A., Abbas, S., & Hazarika, B. (2021). Sovability for a class of generalized functional-integral equations by means of Petrishyn's  xed point theorem, J. Nonlinear Convex Anal., 22, 2715-2737.
[28] Ulam, S. M. (1960). A Collection of the Mathematical Problems, Intercience Publ, New York. https://doi.org/10.1126/science.132.3428.665
[29] Wang, J. (2001). Some further generalization of the Ulam-Hyers-Rassias stability of functional equations, J. Math. Anal. Appl., 263, 406-423. https://doi.org/10.1006/jmaa.2001.7587
[30] Yilmaz, Y., Cakan, S., & Aytekin, S. (2012). Topological quasilinear spaces, Abstr. Appl. Anal., 2012, Art. ID 951374. https://doi.org/10.1155/2012/951374