[2] Alsina, C. (1987). On the stability of a functional equation arising in probabilistic normed spaces, General Inequalities 5 (Birkhauser, Basel), 263-271. https://doi.org/10.1007/978-3-0348-7192-1 20
[3] Aseev, S. M. (1985). Quasilinear operators and their application in the theory of multivalued mappings, Trudy Mat. Inst. Steklov, 276, 25-52.
[5] Benzarouala, Ch., Brzdcek, J., & Oubbi, L. (2023). A xed point theorem and Ulam stability of a general linear functional equation in random normed spaces, J. Fixed Point Theory Appl., 25, Paper No. 33.
https://doi.org/10.1007/s11784-022-01034-8
[6] Brzdek, J., Fechner, W., Moslehian, M.S., & Sikorska, J. (2015). Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal., 9, 278-326.
https://doi.org/10.15352/bjma/09-3-20
[7] Chang, S. H., Cho, Y., & Kang, S. (2001). Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, New York.
[8] Cho, Y. J., Rassias, T. M., & Saadati, R. (2013). Stability of Functional Equations in Random Normed Spaces, Springer Optimization and Its Applications, 86, Springer, Berlin.
https://doi.org/10.1007/978-1-4614-8477-6
[13] Hazarika, B., Srivastava, H. M., Arab, R., & Rabbani, M. (2019). Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to nd solution, Appl. Math. Comput., 360, 131-146.
https://doi.org/10.1016/j.amc.2019.04.058
[17] Jung, S.-M., Popa, D., & Rassias, M. Th. (2014). On the stability of the linear functional equation in a single variable on complete metric groups, J. Glob. Optim., 59, 165-171.
https://doi.org/10.48550/arXiv.1512.04709
[25] Schweizer, B., & Sklar, A. (1983). Probabilistic Metric Spaces, Elsevier North-Holland, New York.
[26] Srivastava, H. M., Das, A., Hazarika, B., & Mohiuddine, S. A. (2019). Existence of solution for non-linear functional integral equations of two variables in Banach algebra, Symmetry, 11(5)., 674, 2715-2737.
https://doi.org/10.3390/sym11050674
[27] Srivastava, H. M., Deep, A., Abbas, S., & Hazarika, B. (2021). Sovability for a class of generalized functional-integral equations by means of Petrishyn's xed point theorem, J. Nonlinear Convex Anal., 22, 2715-2737.