Commutators-based graph in polygroup

Document Type : Research Paper

Authors

Department of Mathematics, University of Payame Noor, Tehran, Iran

Abstract

In this paper, first, we study commutators of a polygroup. Then for a finite polygroup $P$ and a fixed element $g \in P$, we introduce the $g$-graph $\Delta_P^g$. In addition, with some additional conditions, we see that it is connected and the diameter is at most $3$. Then, we investigate isomorphic graphs. Specially, we obtain a new isomorphic graph derived from an isomorphic graph and two non-commutative isomorphic polygroups. Also, we show that two polygroups with  isomorphic graphs preserve nilpotency.

Keywords

Main Subjects


[1] Abdollahi, A., & Akbari, S., & Maimani, H. R. (2006). Non-commuting graph of a group. Journal of Algebra, 298,  468-492. https://doi.org/10.1016/J.JALGEBRA.2006.02.015.
[2] Ameri, R., & Mohammadzadeh, E. (2015). Engel groups derived from hypergroups. European Journal of Cambinatorics, 44, 191-197. https://doi.org/10.1016/j.ejc.2014.08.004
[3] Corsini, P. (1993). Prolegomena of hypergroup theory. Aviani Editore, Tricesimo.
[4] Corsini, P., & V. Leoreanu, V. (2003). Applications of hyperstructure theory. Kluwer Academic Publishers, Dordrecht. https://link.springer.com/book/10.1007/978-1-4757-3714-1.
[5] Comer, S. D. (1982). Extention of polygroups by polygroups and their representations using colour schemes. Lecture notes in Meth, No 1004, Universal Algebra and Lattice Theory, 91-103. https://link.springer.com/chapter/10.1007/BFb0063431.
[6] Davvaz, B. (2013). Polygroup theory and related systems. World Scienti c. https://doi.org/10.1142/8593.
[7] Freni,. D. (1991). Une note sur le cuur dun hypergroup et sur la cloture transitive   de  (A note on the core of a hypergroup and the transitivitive closure   of  ). Riv. Mat. Pura Appl, 8, 153-156 (in French).
[8] Hamidi, M., & Borumand Saeid, A. (2017). Accessible single-valued neutrosophic graphs. Journal of Applied Mathematics and Computing, 57, 121-146. https://doi.org/10.1007/s12190-017-1098-z.
[9] Hamidi, M., & Mirvakili, S., & Hatami, A. (2022). Interval-valued grey (hyper) group. Journal of Algebraic  Hyperstructures and Logical Algebras, 3(3), 85-96. https://10.52547/HATEF.JAHLA.3.3.6
[10] Koskas, M., & Groupoides. (1970). demi-hypergroups ehypergroupes. Journal de mathe'matiques pures et Applique'es, 49, 155-192. https://10.1007/s12190-017-1098-z.
[11] Marty, F. (1934). Sur une Generalization de la Notion de Groupe. in: 8th Congress Math. Scandenaves, Stockholm, Sweden, 45-49.
[12] Moghaddamfar, A. R. (2006). About noncommuting graphs. Siberian Mathematical Journal, 47(5), 911{914.  https://10.1007/s11202-006-0101-y.
[13] Moghaddamfar, A. R.,& Shi, W. J., & Zhou, W., & Zokayi, A. R. (2005). On the noncommuting graph associated with a  nite group. Siberian Math. J., 46(2), 325{332. https://10.1007/s11202-005-0034-x.
[14] Mohammadzadeh, E. (2021). A graph related to a polygroup with respect to automorphism. Journal of Algebraic Hyperstructures and Logical Algebras, 2(1), 99-112. https://10.52547/HATEF.JAHLA.2.1.7.
[15] Mohammadzadeh, F., & Mohammadzadeh, E. (2022). On nilpotent polygroups. 10th national mathematics conference of the Payame Noor University, Shiraz, 1-3.
[16] Nasiri, M., & Erfanian, A., & Gangali, M., & Jafarzadeh, A. (2017). Isomorphic g-noncommuting graphs of  nite groups. Publ. Math. Debrecen, 91/1-2, 33{42. https://10.5486/pmd.2017.7577.
[17] M. Suzuki. (1982). Group theory I. Springer-verlag, New York. https://www.springer.com/series/1721.
 
Volume 13, Issue 4 - Serial Number 29
Special issue dedicated to Professor Esfandiar Eslami
December 2024
Pages 39-52
  • Receive Date: 28 August 2023
  • Revise Date: 27 November 2023
  • Accept Date: 18 January 2024