[1] Arellano-Valle, RB., Azzalini, A., Ferreira, CS., & Santoro, K. (2020). A two-piece normal measurement error model, Computational Statistics and Data Analysis, 144, 106863.
https://doi.org/10.1016/j.csda.2019.106863
[3] Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected papers of hirotugu akaike, New York, NY: Springer New York, 199 213. https://doi.org/10.1007/978-1-4612-1694-0 15
[7] Biernacki, C., Celeux, G., & Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE transactions on pattern analysis and machine intelligence, 22(7), 719 725.
https://doi.org/10.1109/34.865189
[8] Clark, KM., & McNicholas, PD. (2023). Clustering Three-Way Data with Outliers. arXiv preprint arXiv:2310.05288.
[12] Hashemi, F., Naderi, M., & Mashinchi, M. (2019). Clustering right-skewed data stream via Birnbaum{Saunders mixture models: A exible approach based on fuzzy clustering algorithm. Applied Soft Computing, 82, 105539.
https://doi.org/10.1016/j.asoc.2019.105539
[13] Hashemi, F., Naderi, M., Jamalizadeh, A., & Bekker, A. (2021). A exible factor analysis based on the class of mean-mixture of normal distributions. Computational statistics & data analysis, 157, 107162.
https://doi.org/10.1016/j.csda.2020.107162
[15] Lin, TI. (2014). Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition. Computational statistics & data analysis, 71, 183-195.
https://doi.org/10.1016/j.csda.2013.02.020
[16] Lin, TC., & Lin, TI. (2010). Supervised learning of multivariate skew normal mixture models with missing information. Computational Statistics, 25, 183 201.
https://doi.org/10.1007/s00180-009-0169-5
[17] Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John Wiley & Sons.
[21] Naderi, M., Hung, WL., Lin, TI., & Jamalizadeh, A. (2019). A novel mixture model using the multivariate normal mean{variance mixture of Birnbaum{Saunders distributions and its application to extrasolar planets. Journal of Multivariate Analysis, 171, 126 138.
https://doi.org/10.1016/j.jmva.2018.11.015
[22] Naderi, M., Hashemi, F., Bekker, A., & Jamalizadeh, A. (2020). Modeling right-skewed nancial data streams: A likelihood inference based on the generalized Birnbaum-Saunders mixture model. Applied Mathematics and Computation, 376, 125109.
https://doi.org/10.1016/j.amc.2020.125109
[23] Naderi, M., Bekker, A., Arashi, M., & Jamalizadeh, A. (2020). A theoretical framework for Landsat data modeling based on the matrix variate mean-mixture of normal model. Plos one, 15(4), e0230773.
https://doi.org/10.1371/journal.pone.0230773
[24] Naderi, M., & Nooghabi, MJ. (2024). Clustering asymmetrical data with out-liers: Parsimonious mixtures of contaminated mean-mixture of normal distributions. Journal of Computational and Applied Mathematics, 437, 115433.
https://doi.org/10.1016/j.cam.2023.115433
[25] Negarestani, H., Jamalizadeh, A., Sha ei, S., & Balakrishnan, N. (2019). Mean mixtures of normal distributions: properties, inference and application. Metrika, 82, 501 528.
https://doi.org/10.1007/s00184-018-0692-x
[27] Punzo, A., & McNicholas, PD. (2016). Parsimonious mixtures of multivariate contaminated normal distributions. Biometrical Journal, 58(6), 1506 1537.
https://doi.org/10.1002/bimj.201500144
[29] Sepahdar, A., Madadi, M., Balakrishnan, N., & Jamalizadeh, A. (2022). Parsimonious mixture-of-experts based on mean mixture of multivariate normal distributions. Stat, 11(1), e421.
https://doi.org/10.1002/sta4.421
[30] Wang, WL., & Lin, TI. (2015). Robust model-based clustering via mixtures of skew-t distributions with missing information. Advances in Data Analysis and Classi cation, 9, 423 445.
https://doi.org/10.1007/s11634-015-0221-y