[1] Alemdjrodo, K., & Zhao, Y. (2020). New empirical likelihood inference for the mean residual life with length-biased and right-censored data. Journal of Nonparametric Statistics, 32(4), 1029-1046.
https://doi.org/10.1080/10485252.2020.1840568
[2] Alemdjrodo, K., & Zhao, Y. (2022). Novel empirical likelihood inference for the mean di erence with right-censored data. Statistical Methods in Medical Research, 31(1), 87-104.
https://doi.org/10.1177/09622802211041767
[3] Amiri, N., Fakoor, V., Sarmad, M., & Shariati, A. (2022). Empirical likelihood analysis for accelerated failure time model using length-biased data. Statistics, 56(3), 578-597.
https://doi.org/10.1080/02331888.2022.2077334
[4] Andersen, P.K., Hansen, M.G., & Klein, J.P. (2004). Regression analysis of restricted mean survival time based on pseudo-observations. Lifetime data analysis, 10(4), 335-350.
https://doi.org/10.1007/s10985-004-4771-0
[5] Asgharian, M., &Wolfson, D.B. (2005). Asymptotic behavior of the unconditional npmle of the length-biased survivor function from right censored prevalent cohort data. The Annals of Statistics, 33(5), 2109-2131.
https://doi.org/10.1214/009053605000000372
[8] Chen, J., Variyath, A.M., & Abraham, B. (2008). Adjusted empirical likelihood and its properties. Journal of Computational and Graphical Statistics, 17(2), 426-443.
https://doi.org/10.1198/106186008X321068
[9] Cheng, Y.J, & Huang, C.Y. (2014). Combined estimating equation approaches for semiparametric transformation models with length-biased survival data. Biometrics, 70(3), 608-618.
https://doi.org/10.1111/biom.12170
[11] Gach, F., & Potscher, B.M. (2011). Nonparametric maximum likelihood density estimation and simulation-based minimum distance estimators. Mathematical Methods of Statistics, 20, 288-326.
https://doi.org/10.3103/S1066530711040028
[12] Hasegawa, T., Misawa, S., Nakagawa, S., Tanaka, S., Tanase, T., Ugai, H., Wakana, A., Yodo, Y., Tsuchiya, S., & Suganami. (2020). Restricted mean survival time as a summary measure of time-to-event outcome. harmaceutical statistics, 19(4), 436-453.
https://doi.org/10.1002/pst.2004
[13] He, S., & Huang, X. (2003). Central limit theorem of linear regression model under right censorship. Science in China Series A: Mathematics, 46(5), 600-610.
https://doi.org/10.1360/02ys0139
[14] He, Y., & Zhou, Y. (2020). Nonparametric and semiparametric estimators of restricted mean survival time under length-biased sampling. Lifetime Data Analysis, 26, 761-788.
https://doi.org/10.1007/s10985-020-09498-x
[17] Keziou, A., & Leoni-Aubin, S. (2008). On empirical likelihood for semiparametric twosample density ratio models. Journal of Statistical Planning and Inference, 138(4), 915-928.
https://doi.org/10.1016/j.jspi.2007.02.009
[18] Kiwitt, S., Nagel, E.R., & Neumeyer, N. (2008). Empirical likelihood estimators for the error distribution in nonparametric regression models. Mathematical Methods of Statistics, 17, 241-260.
https://doi.org/10.3103/S1066530708030058
[19] Klein, J.P., & Moeschberger, M.L. (2003). Survival analysis: techniques for censored and truncated data, volume 1230. Springer.
https://doi.org/10.1007/b97377
[20] Lee, C.H., Ning, J., & Shen, Y. (2018). Analysis of restricted mean survival time for length-biased data. Biometrics, 74(2), 575-583.
https://doi.org/10.1111/biom.12772
[21] Liang, W., Shen, J.s., & He, S.y. (2016). Likelihood ratio inference for mean residual life of length-biased random variable. Acta Mathematicae Applicatae Sinica, English Series, 32(2), 269-282.
https://doi.org/10.1007/s10255-016-0562-0
[23] Ning, J., Qin, J., Asgharian, M., & Shen, Y. (2013). Empirical likelihood-based condence intervals for length-biased data. Statistics in medicine, 32(13), 2278-2291.
https://doi.org/10.1002/sim.5637
[26] Owen, A.B. (2001). Empirical likelihood. Chapman and Hall/CRC. ISBN:9781420036152, 1420036157
[27] Qin, J., Ning, J., Liu, H., & Shen, Y. (2011). Maximum likelihood estimations and em algorithms with length-biased data. Journal of the American Statistical Association, 106(496), 1434-1449.
https://doi.org/10.1198/jasa.2011.tm10156
[28] Shen, J., Yuen, K.C., & Liu, C. (2016). Empirical likelihood con dence regions for oneor two-samples with doubly censored data. Computational Statistics & Data Analysis, 93, 285-293.
https://doi.org/10.1016/j.csda.2015.01.010
[29] Shi, J., Ma, H., & Zhou, Y. (2018). The nonparametric quantile estimation for length-biased and right-censored data. Statistics & Probability Letters, 134, 150-158.
https://doi.org/10.1016/j.spl.2017.10.020
[30] Wang, Q. H., & Jing, B.Y. (2001). Empirical likelihood for a class of functionals of survival distribution with censored data. Annals of the Institute of Statistical Mathematics, 53, 517-527.
https://doi.org/10.1023/A:1014617112870
[32] Yang, H., Yau, C., &Zhao, Y. (2014). Smoothed empirical likelihood inference for the di erence of two quantiles with right censoring. Journal of Statistical Planning and Inference, 146, 95-101.
https://doi.org/10.1016/j.jspi.2013.09.010
[33] Yang, X., Du, J., & Bai, F. (2023). Semiparametric inference of treatment e ects on restricted mean survival time in two sample problems from length-biased samples. Statistics & Probability Letters, 193, 109715.
https://doi.org/10.1016/j.spl.2022.109715
[34] Yu, X. & Zhao, Y. (2019). Empirical likelihood inference for semi-parametric transformation models with length-biased sampling. Computational Statistics & Data Analysis, 132, 115-125.
https://doi.org/10.1016/j.csda.2018.10.012
[35] Zhang, Y. (2018). A comparison of methods for estimating Restricted Mean Survival Time (Doctoral dissertation, Master's thesis, Leiden University.[100]).
[36] Zhang, C., Wu, Y., & Yin, G. (2020). Restricted mean survival time for interval-censored data. Statistics in Medicine, 39(26), 3879-3895.
https://doi.org/10.1002/sim.8699
[37] Zhao, L., Claggett, B., Tian, L., Uno, H., Pfe er, M.A., Solomon, S.D., Trippa, L., & Wei, L. (2016). On the restricted mean survival time curve in survival analysis. Biometrics, 72(1), 215-221.
https://doi.org/10.1111/biom.12384
[40] Zhong, Y., Zhao, O., Zhang, B., & Yao, B. (2022). Adjusting for covariates in analysis based on restricted mean survival times. Pharmaceutical Statistics, 21(1), 38-54.
https://doi.org/10.1002/pst.2151
[43] Zhou, Y., & Liang, H. (2005). Empirical-likelihood-based semiparametric inference for the treatment e ect in the two-sample problem with censoring. Biometrika, 92(2), 271-282. https://doi.org/10.1093/biomet/92.2.271