[1] Versick, D., Tavangarian, D. (2013). The CSARA architecture for power and thermal-aware placement of virtual machines. Paper presented at the 2013 International Green Computing Conference Proceedings.
[2] Sun, H., Stolf, P., Pierson, J.-M., Da Costa, G. J. S. C. I., Systems. (2014). Energyecient and thermal-aware resource management for heterogeneous datacenters. 4(4), 292-306.
[3] Chaudhry, M. T., Ling, T. C., Manzoor, A., Hussain, S. A., Kim, J. J. A. C. S. (2015). Thermal-aware scheduling in green data centers. 47(3), 1-48.
[4] Mhedheb, Y., Streit, A. (2016). Energy-ecient task scheduling in data centers. Paper presented at the International Conference on Cloud Computing and Services Science.
[5] Liu, X., Gu, H., Zhang, H., Liu, F., Chen, Y., Yu, X. J. M., Microsystems. (2017). Energy-Aware on-chip virtual machine placement for cloud-supported cyber-physical systems. 52, 427-437.
[6] Ananthi, M. S. S. D. B. Virtual Machine Management for Cloud Data Center to Avoid Security Issues.
[7] Salimian, L., Sa -Esfahani, F. J. I. J. o. G., Computing, U. (2018). Energy-ecient placement of virtual machines in cloud data centres based on fuzzy decision making. 9(4), 367-384.
[8] Kaur, A., Singh, V., Gill, S. S. (2018). The future of cloud computing: opportunities, challenges and research trends. Paper presented at the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2018 2nd International Conference on.
[9] Masdari, M., Nabavi, S. S., Ahmadi, V. J. J. o. N., Applications, C. (2016). An overview of virtual machine placement schemes in cloud computing. 66, 106-127.
[10] Van Damme, T., De Persis, C., Tesi, P. J. I. T. o. C. S. T. (2018). Optimized thermal-aware job scheduling and control of data centers. 27(2), 760-771.
[11] Reddy, M. A., Ravindranath, K. J. A. A. I. (2020). Virtual machine placement using JAYA optimization algorithm. 34(1), 31-46.
[12] Ahmed, K., Yoshii, K., Tasnim, S. (2019). Thermal-aware power capping allocation model for high performance computing systems. Paper presented at the 2019 Interna-tional Conference on Computational Science and Computational Intelligence (CSCI).
[13] Nath, K. R., Sreeram, G., Lavanya, D., Kiran, U., Rajesh, P. J. I. J. o. A. S., & Technology. (2019). Ecient virtual machine placement in data center. 28(16), 580-587.
[14] Qiu, Y., Jiang, C., Wang, Y., Ou, D., Li, Y., & Wan, J. J. E. (2019). Energy aware virtual machine scheduling in data centers. 12(4), 646.
[15] Omer, S., Azizi, S., Shojafar, M., Tafazolli, R. J. J. o. s. a. (2021). A priority, power and trac-aware virtual machine placement of IoT applications in cloud data centers. 115, 101996.
[16] Tang, Q., Mukherjee, T., Gupta, S. K., Cayton, P. (2006). Sensor-based fast thermal evaluation model for energy ecient high-performance datacenters. Paper presented at the 2006 Fourth international conference on intelligent sensing and information processing.
[17] Fernandez de La Vega, W., Lueker, G. S. J. C. (1981). Bin packing can be solved within 1+ e in linear time. 1(4), 349-355.
[18] Blum, C., Roli, A. J. A. c. s. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. 35(3), 268-308.
[19] Yi, D., Zhou, X., Wen, Y., Tan, R. J. I. T. o. P., Systems, D. (2020). Ecient compute-intensive job allocation in data centers via deep reinforcement learning. 31(6), 1474-1485.
[20] Liao, D., Sun, G., Yang, G., Chang, V. J. F. G. C. S. (2018). Energy-ecient virtual content distribution network provisioning in cloud-based data centers. 83, 347-357.
[21] Stergiou, C. L., Psannis, K. E., Gupta, B. B. (2021). InFeMo: exible big data management through a federated cloud system. ACM Transactions on Internet Technology (TOIT), 22(2), 1-22.
[22] Aghasi, A., Jamshidi, K., Bohlooli, A. (2022). A thermal-aware energy-ecient virtual machine placement algorithm based on fuzzy controlled binary gravitational search algorithm (FC-BGSA). Cluster Computing, 1-19.
[23] Kumar, D., Kulshrestha, S. (2018). Energy Ecient Task Scheduling in Cloud Data Center. International Journal of Distributed Cloud Computing, 6(2).
[24] Chen, R., Liu, B., Lin, W., Lin, J., Cheng, H., Li, K. (2023). Power and thermal-aware virtual machine scheduling optimization in cloud data center. Future Generation Computer Systems, 145, 578-589.
[25] Lee, E. K., Viswanathan, H., Pompili, D. J. I. T. o. C. C. (2015). Proactive thermal-aware resource management in virtualized HPC cloud datacenters. 5(2), 234-248.
[26] Aghasi, A., Jamshidi, K., Bohlooli, A., Javadi, B. (2023). A decentralized adaptation of model-free Q-learning for thermal-aware energy-ecient virtual machine placement in cloud data centers. Computer Networks, 224, 109624.
[27] Portaluri, G., Adami, D., Gabbrielli, A., Giordano, S., Pagano, M. (2016). Power consumption-aware virtual machine allocation in cloud data center. Paper presented at the 2016 IEEE Globecom Workshops (GC Wkshps).
[28] Kim, Y. G., Kim, S. Y., Choi, S. H., Chung, S. W. (2021). Thermal-aware adaptive VM allocation considering server locations in heterogeneous data centers. Journal of Systems Architecture, 117, 102071.
[29] Feng, H., Deng, Y., Li, J. (2021). A global-energy-aware virtual machine placement strategy for cloud data centers. Journal of Systems Architecture, 116, 102048.
[30] Feng, H., Deng, Y., Zhou, Y., Min, G. (2021). Towards heat-recirculation-aware virtual machine placement in data centers. IEEE Transactions on Network and Service Management, 19(1), 256-270.
[31] Li, J., Deng, Y., Wang, R., Zhou, Y., Feng, H., Min, G., Qin, X. (2023). BTVMP: A Burst-Aware and Thermal-Ecient Virtual Machine Placement Approach for Cloud Data Centers. IEEE Transactions on Services Computing.
[32] El-Sayed, N., Stefanovici, I. A., Amvrosiadis, G., Hwang, A. A., Schroeder, B. (2012, June). Temperature management in data centers: Why some (might) like it hot. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement and Modeling of Computer Systems (pp. 163-174).
[33] Liu, B., Chen, R., Lin, W., Wu, W., Lin, J., Li, K. (2023). Thermal-aware virtual machine placement based on multi-objective optimization. The Journal of Supercomputing, 1-28.
[34] Mao, L., Chen, R., Cheng, H., Lin, W., Liu, B., Wang, J. Z. (2023). A resource scheduling method for cloud data centers based on thermal management. Journal of Cloud Computing, 12(1), 1-18.
[35] Mann, Z. A. J. I. T. o. C. (2016). Multicore-aware virtual machine placement in cloud data centers. 65(11), 3357-3369.
[36] Marcel, A., Cristian, P., Eugen, P., Claudia, P., Cioara, T., Anghel, I., Ioan, S. (2016). Thermal aware workload consolidation in cloud data centers. Paper presented at the 2016 IEEE 12th international conference on intelligent computer communication and processing (ICCP).
[37] Li, X., Garraghan, P., Jiang, X., Wu, Z., Xu, J. J. I. T. o. p., systems, d. (2017). Holistic virtual machine scheduling in cloud datacenters towards minimizing total energy. 29(6), 1317-1331.
[38] Wang, J. V., Cheng, C. T., Tse, C. K. J. S. P., Experience. (2019). A thermal-aware VM consolidation mechanism with outage avoidance. 49(5), 906-920.
[39] Ilager, S., Ramamohanarao, K., Buyya, R. J. C., Practice, C., Experience. (2019). ETAS: Energy and thermal-aware dynamic virtual machine consolidation in cloud data center with proactive hotspot mitigation. 31(17), e5221.
[40] Akbari, A., Khonsari, A., Ghoreyshi, S. M. J. E. (2020). Thermal-aware virtual machine allocation for heterogeneous cloud data centers. 13(11), 2880.
[41] Gill, S. S., Tuli, S., Toosi, A. N., Cuadrado, F., Garraghan, P., Bahsoon, R., . . . Software. (2020). ThermoSim: Deep learning based framework for modeling and simulation of thermal-aware resource management for cloud computing environments. 166, 110596.
[42] Zolfaghari, R., Saha , A., Rahmani, A. M., Rezaei, R. J. S. P., Experience. (2022). An energy-aware virtual machines consolidation method for cloud computing: Simulation and veri cation. 52(1), 194-235.
[43] Al-Qerem, A., Alauthman, M., Almomani, A., Gupta, B. B. (2020). IoT transaction processing through cooperative concurrency control on fog{cloud computing environment. Soft Computing, 24, 5695-5711.