A novel method for solving fuzzy parabolic PDE by using the SG-Hukuhara differentiability

Document Type : Special Issue Dedicated to Prof. Esfandiar Eslami

Authors

1 Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran

2 Department of Mathematics, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

Abstract

In this paper, the method of Crank-Nicolson is proposed for approximating the solution of  a fuzzy parabolic PDE by applying the subject of  SG-Hukuhara differentiability where the initial and boundary conditions are fuzzy numbers. The consistency and stability of this method are investigated and finally,  a non-trivial example is given by this method.

Keywords

Main Subjects


[1] M. B. Ahmadi, N. Kiani: Solving fuzzy partial di erential equation by di erential transformation method. J. Appl Math 7, (2011) 1{16.
[2] M. Akram, G. Muhammad, T. Allahviranloo, W. Pedrycz,: Solution of initial-value problem for linear third-order fuzzy di erential equations. Comp. Appl. Math. 41, (2022)
[3] T. Allahviranloo, Z. Gouyandeh , A. Armand, A. Hasanoglu: On fuzzy solutions for heat equation based on generalized Hukuhara di erentiability. Fuzzy Sets Syst. 265, (2015) 1{23.
[4] B. Bede, S. G. Gal: Almost periodic fuzzy-number-valued functions. Fuzzy Sets Syst. 147(3), (2004) 385{403.
[5] B. Bede, S. G. Gal: Generalizations of the di erentiability of fuzzy-number-valued functions with applications to fuzzy di erential equations. Fuzzy sets syst. 151(3), (2005) 581{599.
[6] B. Bede, I. J. Rudas, A. L. Bencsik: First order linear fuzzy di erential equations under generalized di erentiability. Inform. sci. 177(7), (2007) 1648{1662.
[7] B. Bede , L. Stefanini: Generalized di erentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, (2013) 119{141.
[8] N. Mikaeilvand, S. Khakrangin: Solving fuzzy partial di erential equations by fuzzy two dimensional di erential transform method. Neural Comp. Appl. 21(1), (2012) 307{312.
[9] M. M. Moghadam, I. Jalal: Finite volume methods for fuzzy parabolic equations. J. Math. Comp. Sc. 2(3) (2011) 546{558.
[10] M. L. Puri, D. A. Ralescu: Di erentials of fuzzy functions. J. Math. Anal. Appl. 91(2), (1983) 552{558.
[11] N. Salamat, M. Mustahsan, M. M. Saad Missen: Switching point solution of second-order fuzzy di erential equations using di erential transformation method. Mathematics, 7(3), (2019) 1{19.
[12] L. Stefanini, B. Bede: Generalized Hukuhara di erentiability of interval-valued functions and interval di erential equations. Nonlinear Anal.: Theo., Methods & Appl. 71(3-4), (2009) 1311{1328.
[13] S. Zabihi, R. Ezzati, F. Fattahzadeh, et al: Application of fuzzy  nite di erence scheme for the non-homogeneous fuzzy heat equation. Soft Comput. 26, (2022) 2635{2650.
Volume 13, Issue 4 - Serial Number 29
Special issue dedicated to Professor Esfandiar Eslami
December 2024
Pages 67-82
  • Receive Date: 02 December 2023
  • Revise Date: 25 February 2024
  • Accept Date: 28 April 2024