[2] Abidi, O., Heyouni, M., & Jbilou, K. (2017). On some properties of the extended block and global Arnoldi methods with applications to model reduction. Numerical Algorithms, 75, 285-304.
https://doi.org/10.1007/s11075-016-0207-7
[3] Abou-Kandil, H., Freiling, G., Ionescu, V. & Jank, G. (2003). Matrix Riccati equations in control and systems theory. Birkhauser.
[4] Addam, M., Heyouni, M., & Sadok, H. (2017). The block Hessenberg process for matrix equations. Electronic Transactions on Numerical Analysis, 46, 460-473.
[5] Agoujil, S., Bentbib, A. H., Jbilou, K. & Sadek, El M. (2014). A minimal residual norm method for large-scale Sylvester matrix equations. Electronic Transactions on Numerical Analysis, 43, 45-59.
https://doi.org/10.1016/j.amc.2006.10.011
[6] Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., & De Tommasi, G. (2014). Finite-Time stability and control. Springer.
[7] Antoulas, A. C. (2005). Approximation of Large-Scale Dynamical Systems. SIAM.
[9] Azizizadeh, N., Tajaddini, A., & Wu, G.(2018). Weighted and de ated global GMRES algorithms for solving large Sylvester matrix equations. Numerical Algorithms, 82, 155-181.
https://doi.org/10.1007/s11075-018-0597-9
[11] Benner, P., & and Mena, H. (2004). BDF methods for large-scale di erential Riccati equations. Proceedings of Mathematical Theory of Network and Systems, MTNS.
[13] Blanquer, I., Claramunt, H., Hernandez, V., & Vidal, A. M. (1998). Solving the Generalized Lyapunov Equation by the Bartels-Stewart Method using Standard Software Libraries for Linear Algebra Computations. IFAC Proceedings Volumes, 31(18), 387-392.
[14] Boisvert, R., Pozo, R., Remington, K., Barrett, R., & Dongarra, J. (1997). The Matrix Market: A web resource for test matrix collections, in Quality of Numerical Software, Assessment and Enhancement, R. Boisvert, ed., Chapman & Hall, London, 125-137.
[15] Bouhamidi, A., Elbouyahyaoui, L., & Heyouni, M. (2024). The constant solution method for solving large-scale di erential Sylvester matrix equations with time invariant coecients. Numerical Algorithms, 96, 449-488.
https://doi.org/10.1007/s11075-023-01653-3
[16] Butcher, J. C. (2008). Numerical methods for ordinary di erential equations. John Wiley & Sons.
[17] Golub, G. H., Nash, S., & Van Loan, C. (1979). A Hessenberg-Schur method for the problem AX + XB = C. IEEE Transactions on Automatic Control, 24, 909-913.
https://doi.org/10.1109/tac.1979.1102170
[18] Hached, M., & Jbilou, K. (2018). Computational Krylov-based methods for large-scale di erential Sylvester matrix problems. Numerical Linear Algebra with Applications, 25(5), e2187.
https://doi.org/10.1002/nla.2187
[20] Hached, M., & Jbilou, K. (2020). Numerical methods for di erential linear matrix equations via Krylov subspace methods. Journal of Computational and Applied Mathematics, 370, 112-647.
https://doi.org/10.1016/j.cam.2019.112674
[21] Heyouni, M., & Jbilou, K. (2009). An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation. Electronic Transactions on Numerical Analysis, 33, 53-62.
http://eudml.org/doc/130626
[22] Heyouni, M., Saberi-Movahed, F., & Tajaddini, A.(2019). On global Hessenberg based methods for solving Sylvester matrix equations. Computers & Mathematics with Applications, 77(1), 77-92.
https://doi.org/10.1016/j.camwa.2018.09.015
[23] Higham, N. J. (2005). The scaling and squaring method for the matrix exponential revised. SIAM Journal on Matrix Analysis and Applications, 26(4), 1179-1193.
https://doi.org/10.1137/04061101X
[24] Penzl, T. (2000). LYAPACK. A MATLAB Toolbox for large Lyapunov and Riccati equations, Model Reduction Problems, and Linear-Quadratic Optimal Control Problems.
[25] Rosenbrock, H. H., (1963). Some general implicit processes for the numerical solution of di erential equations. The Computer Journal, 5(4), 329-330.
https://doi.org/10.1093/comjnl/5.4.329
[26] Saad, Y. (1989). Numerical solution of large Lyapunov equations. Research Institute for Advanced Computer Science, NASA Ames Research Center.
[27] Saad, Y. (1992). Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM Journal on Numerical Analysis, 29, 209-228.
https://doi.org/10.1137/0729014
[28] Sadek, E. M., Bentbib, A., Sadek, L., & Alaoui, H. (2020). Global extended Krylov subspace methods for large-scale di erential Sylvester matrix equations. Journal of Applied Mathematics and Computing, 62, 157-177.
https://doi.org/10.1007/s12190-019-01278-7
[29] Sadek, L., Sadek, El M. & Alaoui, H. T. (2022). On Some Numerical Methods for Solving Large Di erential Nonsymmetric Stein Matrix Equations, Mathematical and Computational Applications, 27(4: 69),
https://doi.org/10.3390/mca27040069
[30] Sadok, H. (1999). CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numerical Algorithms 20(4), 303-321.
https://doi.org/10.1023/A:1019164119887
[31] Simoncini, V. (2007). A new iterative method for solving large-scale Lyapunov matrix equations. SIAM Journal on Scienti c Computing, 29(3), 1268-1288.
https://doi.org/10.1137/06066120X
[32] Tajaddini, A., Wu, G., Saberi-Movahed, F., & Azizizadeh, N.(2021). Two New Variants of the Simpler Block GMRES Method with Vector De ation and Eigenvalue De ation for Multiple Linear Systems. Journal of Scienti c Computing, 86(9), 1-33.
https://doi.org/10.1007/s10915-020-01376-w