[1] Atkinson K. & Han W. (2009). Theoritical Numerical Analysis, A Functional Analysis Framework. Third Edition. Springer.
[2] Batogna R. G. (2018). Analysis of Option Pricing within the Scope of Fractional Calculus. Doctoral Dissertation. Department of Mathematics and Applied Mathematics, University of the Free State.
[3] Cen Zh., Huang J., Xu A. & Le A. (2018). Numerical approximation of a time-fractional Black{Scholes equation. Computers & Mathematics with Applications. 75(8). 2874-2887.
https://doi.org/10.1016/j.camwa.2018.01.016
[4] Cerda J. (2010). Linear Functional Analysis. American Mathematical Society.
[5] Chen W., Xu X. & Zhu S. P. (2015). Analytically pricing double barrier options based on a time-fractional Black{Scholes equation. Computers and Mathematics with Applications. 69. 1407{1419.
http://dx.doi.org/10.1016/j.camwa.2015.03.025
[6] Daftardar-Gejji V. (2019). Fractional Calculus and Fractional Di erential Equations. Springer Nature Singapore Pte Ltd.
[7] Gomez-Aguilar J.F., Razo-Hernandez R. & Granados-Lieberman D. (2014). A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response. Revista Mexicana de Fisica. 60. 32-38.
[8] Gupta V. & Agarwal R. P. (2014). Convergence Estimates in Approximation Theory. Springer.
[9] Khalouta A. (2022). On the solutions of nonlinear Caputo{Fabrizio fractional partial differential equations arising inapplied mathematics. Journal of Prime Research in Mathematics, 18(2), 42-54.
[10] Khalouta A. (2023). New Technique to Accelerate the Convergence of the Solutions of Fractional Order Bratu-Type Di erential Equations. Journal of Science and Arts, 23(3), 609-624.
[11] Khalouta, A. (2023). New approaches for solving Caputo time-fractional non-linear system of equations describing the unsteady ow of a polytropic gas. International Journal of Nonlinear Analysis and Applications. 14(3). 33-46.
https://doi.org/10.22075/ijnaa.2022.26839.3422
[12] Khalouta A. (2023). A novel computational method for solving the fractional SIS epidemic model of two di erent fractional operators. Annals of the University of Craiova, Mathematics and Computer Science Series, 50(1). 136{151.
https://doi.org/10.52846/ami.v50i1.1639
[13] Laub A. J. (2005). Matrix Analysis for Scientists & Engineers. SIAM.
[14] Li C. & Cai M. (2019). Theory and Numerical Approximations of Fractional Integrals and Derivatives. SIAM.
[16] Limaye B. V. (2016). Linear Functional Analysis for Scientists and Engineers. Springer.
[17] Mesgarani H., Bakhshandeh M. & Esmaeelzade Aghdam Y. (2022). The Convergence Analysis of the Numerical Calculation to Price the Time-Fractional Black{Scholes Model. Computational Economics.
https://doi.org/10.1007/s10614-022-10322-x
[18] Mesgarani H., Beiranvand A. & Esmaeelzade Aghdam Y. (2021). The impact of the Chebyshev collocation method on solutions of the time-fractional Black{Scholes. Mathematical Sciences. (15). 137-143.
https://doi.org/10.1007/s40096-020-00357-2
[19] Mohammadi F. (2018). Numerical solution of systems of fractional delay di erential equations using a new kind of wavelet basis. Comp. Appl. Math. 37: 4122-4144.
https://doi.org/10.1007/s40314-017-0550-x
[20] Mohapatra J., Santra S. & Ramos H. (2023). Analytical and Numerical Solution for the Time Fractional Black-Scholes Model Under Jump-Di usion. Computational Economics. Springer.
https://doi.org/10.1007/s10614-023-10386-3
[22] Morgado M. L., Rebelo M., Ferras L. L. & Ford N. (2016). Numerical solution for di usion equations with distributed order in time using a Chebyshev collocation method. Applied Numerical Mathematics.
http://dx.doi.org/10.1016/j.apnum.2016.11.001
[25] Owolabi K. M. & Atangana A. (2019). Numerical Methods for Di erentiation. Springer.
[26] Roul P. (2020). A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options. Applied Numerical Mathematics. 151. 472-493.
[27] SikoraB. (2023). Remarks on the Caputo fractional derivative. MINUT. 5. 76-84.
[28] Song L. & Wang W. (2013). Solution of the Fractional Black-Scholes Option Pricing Model by Finite Di erence Method. Abstract Applied Analysis. 1-10.
https://doi.org/10.1155/2013/194286
[29] SontakkeB. R. & Shaikh A. S. (2015). Properties of Caputo Operator and Its Applications to Linear Fractional Di erential Equations. Journal of Engineering Research and Applications, 5(5), 22-27.
[30] Sugandha A., Rusyaman E., Sukono & Carnia E. (2023). A New Solution to the Fractional Black{Scholes Equation Using the Daftardar-Gejji Method. Mathematics. 11(24):4887.
https://doi.org/10.3390/math11244887
[31] Torchinsky A. (2015). Problems in Real and Functional Analysis. American Mathematical Society.
[32] Zhang H., Liu F., Turner I. & Yang Q. (2016). Numerical solution of the time fractional Black{Scholes model governing European options. Computers & Mathematics with Applications. 71(9). 1772-1783.
https://doi.org/10.1016/j.camwa.2016.02.007
[33] Zhang K. (2021). Existence and uniqueness of analytical solution of time-fractional Black-Scholes type equation involving hyper-Bessel operator. Mathematical Methods in the Applied Sciences. 44(7). 6164{6177.
https://doi.org/10.1002/mma.7177
[34] Zhao H. & Tian H. (2017). Finite di erence methods of the spatial fractional Black{Schloes equation for a European call option. IMA Journal of Applied Mathematics. 82(4). 836-848,
https://doi.org/10.1093/imamat/hxx016