Eliminating congestion of decision-making units using inverse data envelopment analysis

Document Type : Research Paper

Authors

1 Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Department of Mathematics, Khomeinishar branch, Islamic Azad University, Isfahan, Iran.

Abstract

This survey proposes a new application of the inverse data envelopment analysis (InvDEA) in the problem of merging decision-making units (DMUs) to improve the performance of DMUs by removing congestion. Congestion is a factor in reducing production; therefore, removing it decreases costs and increases outputs. There are two significant subjects in the merging DMUs. Estimating the inherited inputs and outputs of a new production DMU with no congestion is the first problem while achieving a pre-specified efficiency level from the merged DMU is the second one. Both problems are examined using the ideas of inverse DEA and congestion. Using Pareto solutions to multiple-objective programming problems, sufficient conditions for inherited input/output estimates with no congestion and increasing efficiency are created. Besides, an example is perused for the reliability of the proposed approach in basic research institutes in the Chinese Academy of Science (CAS) in 2010.

Keywords

Main Subjects


[1] Amin, G. R., Emrouznejad, A., Gattou , S., (2017). Minor and major consolidations in inverse dea: De nition and determination. Computers Industrial Engineering 103, 193-200. https://doi.org/10.1016/j.cie.2016.11.029
[2] Amin, G. R., Emrouznejad, A., Gattou , S., (2017). Modelling generalized  rms' restructuring using inverse dea. Journal of Productivity Analysis 48, 51-61. https://doi.org/10.1007/s11123-017-0501-y
[3] Amin, G. R., Qukil, A., (2019). Flexible target setting in mergers using inverse data envelopment analysis. International Journal of Operational Research 35, 301-317. https://doi.org/10.1504/ijor.2019.10022710
[4] Asgharian, M., Khodabakhshi, M., Neralic, L., (2010). Congestion in stochastic data envelopment analysis: an input relaxation approach. International Journal of Statistics and Management System 5 (1), 84-106.
[5] Avkiran, N., (1999). The evidence on eciency gains: the role of mergers and the bene ts to the public. Journal of Banking & Finance 23 (7), 991-1013. https://doi.org/10.1016/S0378-4266(98)00129-0
[6] Banker, R. D., Charnes, A., Cooper, W. W., (1984). Some models for estimating technical and scale eciencies in data envelopment analysis. Management Science 30, 1078-1092. http://www.jstor.org/stable/2631725
[7] Bogetoft, P., Strange, N., Thorsen, B., (2003). Eciency and merger gains in the danish forestry extension service. Forest Science 49 (4), 585-595. https://doi.org/10.1093/forestscience/49.4.585
[8] Bogetoft, P., Wang, D., (2005). Estimating the potential gains from mergers. Journal of Productivity Analysis 23, 145-171. https://doi.10.22004/ag.econ.24213
[9] Brockett, P. L., Cooper, W. W., Shin, H. C.,Wang, Y., (1998). Ineciency and congestion in chinese production before and after the 1978 economic reforms. Socio- Economic planning sciences 32, 1-20. https://doi.org/10.1016/S0038-0121(97)00020-7
[10] Charnes, A., Cooper, W. W., Rhodes, E., (1978). Measuring the eciency of decision making units. European Journal of Operational Research 2, 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
[11] Chen, L., Wang, Y., Lai, F., Feng, F., (2017). An investment analysis for china's sustainable development based on inverse data envelopment analysis. Journal of Cleaner Production 142 (4), 1638-1649. https://doi.org/10.1016/j.jclepro.2016.11.129
[12] Cooper, W. W., Deng, H., Huang, Z. M., Li, S. X., (2002). One model approach to congestion in data envelopment analysis. Socio-Economic planning sciences 36, 231-238. https://doi.org/10.1016/S0038-0121(02)00008-3
[13] Cooper, W. W., Thompson, R. G., Thrall, R. M., (1996). Introduction: extensions and new developments in dea. Annals of operations research 66, 3-45. https://doi.org/10.1007/BF02125451
[14] De Witte, K., Dijkgraaf, E., (2010). Mean and bold? on separating merger economies from structural eciency gains in the drinking water sector. Journal of the Operational Research Society 61 (2), 222-234. https://doi.org/10.1057/jors.2008.129
[15] Ebrahimzadeh Adimi, M., Rostamy-Malkhalifeh, M., Hossienzadeh lot , F., Mehrjoo, R., (2019). A new linear method to  nd the congestion hyperplane in dea. Mathematical Sciences 13, 43-52. https://doi.org/10.1007/s40096-019-0277-5
[16] Ehrgott, M., (2005). Multicriteria optimization. Springer Berlin.
[17] Emrouznejad, A., Amin, G. R., Ghiyasi, M., Michali, M., (2023). A review of inverse data envelopment analysis: origins, development and future directions. IMA Journal of Management Mathematics 34 (3), 421-440. https://doi.org/10.1093/imaman/dpad006
[18] Fang, L., (2015). Congestion measurement in nonparametric analysis under the weakly disposable technology. European Journal of Operational Research 245, 203-208. https://doi.org/10.1016/j.ejor.2015.03.001
[19] Fare, R., Grosskopf, S., (1983). Measuring congestion in production. Zeitschr. f. Nationalokonomie 43 (3), 257-271. https://doi.org/10.1007/BF01283574
[20] Fare, R., Grosskopf, S., Lovel, C. A. K., (1985). The measurement of eciency of production. Kluwer-Nijho  Publishing, Boston.
[21] Fare, R., Svensson, L., (1980). Congestion of production factors. The Econometric Society 48, 1745-1752.
[22] Fuentes, R., Bellver-Domingo, A., Hernanndez-Chover, V., Hernanndez- Sancho, F., (2020). Identi cation and correction of congestion in wastewater treatment plants in the community of valencia, spain. Zeitschr. f. Nationalokonomie 27, 15729-15742. https://doi.org/10.1007/s11356-020-08063-1
[23] Gattou , S., Amin, G. R., Emrouznejad, A., (2014). A new inverse dea method for merging banks. IMA Journal of Management Mathematics 25, 73-87. https://doi.org/10.1093/imaman/dps027
[24] Ghobadi, S., (2021). Merging decision-making units with interval data. RAIROOperations Research 55, 1605-1630. https://doi.org/10.1051/ro/2020029
[25] Gholoom, S., Zervopoulos, P., (2023). The e ect of mergers and acquisitions on eciency: evidence from the pharmaceutical industry. Advances in Science and Technology 129, 77-95. https://doi.org/10.4028/p-qLBAB6
[26] Hadi-Vencheh, A., Foroughi, A. A., (2006). A generalized dea model for inputs/outputs estimation. Mathematical and Computer Modelling 43 (5-6), 447-457. https://doi.org/10.1016/j.mcm.2005.08.005
[27] Hajaji, H., Youse , S., Sean, R. F., Hassanzadeh, A., (2021). Recommending investment opportunities given congestion by adaptive network data envelopment analysis model: assessing sustainability of supply chains. RAIRO - Operations Research 55, 21-49. https://doi.org/10.1051/ro/2019059
[28] Halkos, G., Tzeremes, N., (2013). Estimating the degree of operating eciency gains from a potential bank merger and acquisition: a dea bootstrapped approach. Journal of Banking & Finance 37 (5), 1658-1668. https://doi.org/10.1016/j.jbank n.2012.12.009
[29] Jahanshahloo, G. R., khodabakhshi, M., (2004). Suitable combination of input for improving outputs in dea with determining input congestion: considering textile industry of china. Applied Mathematics and Computation 151 (1), 263-273. https://doi.org/10.1016/S0096-3003(03)00337-0
[30] Jahanshahloo, G. R., Lot , F. H., Shoja, N., Tohidi, G., Razavyan, S., (2004). Input estimation and identi cation of extra inputs in inverse dea models. Applied Mathematics and Computation 156 (2), 427-437. https://doi.org/10.1016/j.amc.2003.08.001
[31] Jahanshahloo, G. R., Soleimani-damaneh, M., Ghobadi, S., (2015). Inverse dea under inter-temporal dependence using multiple-objective programming. European Journal of Operational Research 240, 447-456. https://doi.org/10.1016/j.ejor.2014.07.002
[32] Kao, C., (2010). Congestion measurement and elimination under the framework of data envelopment analysis. International Journal of Production Economics 123 (2), 257-265. https://doi.org/10.1016/j.ijpe.2009.06.044
[33] Kheirollahi, H., Hessari, P., (2017). An input relaxation model for evaluating congestion in fuzzy dea. Croatian Operational Research Review 8 (2), 391-408. DOI: 10.17535/crorr.2017.0025
[34] Khezri, S., Dehnokhalaji, A., Hosseinzadeh Lot , F., (2021). A full investigation of the directional congestion in data envelopment analysis. RAIRO-Operations Research 55, 571-591. https://doi.org/10.1051/ro/2019092
[35] Khoveyni, M., Eslami, R., Yang, G., (2017). Negative data in dea: Recognizing congestion and specifying the least and the most congested decision making units. Computers & Operations Research 79, 39-48. https://doi.org/10.1016/j.cor.2016.09.002
[36] Khoveyni, M., Eslami, R., khodabakhshi, M., Jahanshahloo, G. R., Hosseinzadeh Lot , F., (2013). Recognizing strong and weak congestion slack based in data envelopment analysis. Computers & Industrial Engineering 64 (2), 731-738. DOI:
10.1016/j.cie.2012.11.014
[37] Kong, C., Chow, W., Ka, M., Fung, Y., (2012). Measuring the e ects of china's airline mergers on the productivity of state-owned carriers. Journal of Air Transport Management 25, 1-4. DOI: 10.1016/j.jairtraman.2011.08.006
[38] Mehdiloozad, M., Zhu, J., Sahoo, B., (2018). Identi cation of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data. European Journal of Operational Research 265 (2), 644-654. DOI: 10.1016/j.ejor.2017.07.065
[39] Oukil, A., (2022). Investigating prospective gains from mergers in the agricultural sector through inverse dea. IMA Journal of Management Mathematics 34 (3), 465-490. DOI:10.1093/imaman/dpac004
[40] Ren, X. T., Fukuyama, H., Yang, G., (2022). Eliminating congestion by increasing inputs in r&d activities of chinese universities. Omega 110, 102618. https://doi.org/10.1016/j.omega.2022.102618
[41] Shadab, M., Saati, S., Farzipoor Saen, R., Khoveyni, M., Mostafaee, A., (2021). Measuring congestion in sustainable supply chain based on data envelopment analysis. Neural Computing and Applications 33, 12477-12491. https://doi.org/10.1007/s00521-021-05889-9
[42] Shahsavan, T., Sanei, M., Tohidi, G., Lot , F. H., Ghobadi, S., (2022). A new method of determining decision-making unit congestion under inter-temporal dependence. Soft Comput 26, 2063-2073. https://doi.org/10.1007/s00500-021-06566-8
[43] Shahsavan, T., Sanei, M., Tohidi, G., Lot , F. H., Ghobadi, S., (2023). Determining the amount of the excess input and the output shortage of the congested decision-making units with negative data. Mathematical Sciences 17, https://doi.org/10.1007/s40096-023-00511-6.
[44] Sharma, M. J., Song Jin, Y., (2013). Multi-stage data envelopment analysis congestion model. Operational Research 13, 399-413. https://doi.org/10.1007/s12351-012-0128-8
[45] Shiri Daryani, Z., Tohidi, G., Daneshian, B., Razavyan, S., Hosseinzadeh Lot , F., (2023). Inverse data envelopment analysis for merging two-stage network systems. International Journal of Applied Operational Research 11 (4), 39-49. http://ijorlu.liau.ac.ir/article-1-647-en
[46] Soltanifar, M., Ghiyasi, M., Shara , H., (2023). Inverse dea-r models for merger analysis with negative data. IMA Journal of Management Mathematics 34 (3), 491-510. https://doi.org/10.1093/imaman/dpac001
[47] Sueyoshi, T., Sekitani, K., (2009). Dea congestion and returns to scale under an occurrence of multiple optimal projections. European Journal of Operational Research 194 (2), 592-607. https://ideas.repec.org/a/eee/ejores/v194y2009i2p592-607
[48] Tone, K., Sahoo, B. K., (2004). Degree of scale economies and congestion: A uni ed dea approach. European Journal of Operational Research 158 (3), 755-772. https://doi.org/10.1016/S0377-2217(03)00370-9
[49] Wang, Z., Wu, X., Lo, K., Mi, J., (2021). Assessing the management eciency of shipping company from a congestion perspective: A case study of hapag-lloyd. Ocean Coast Manag 209, 4-23. DOI: 10.1016/j.ocecoaman.2021.105617
[50] Wei, Q. L., Yan, H., (2004). Congestion and returns to scale in data envelopment analysis. European Journal of Operational Research 153 (3), 641-660. DOI: 10.1016/S0377-2217(02)00799-3
[51] Wei, Q. L., Zhang, J. Z., Zhang, X. S., (2000). An inverse dea model for inputs/outputs estimate. European Journal of Operational Research 121 (1), 151-163. https://doi.org/10.1016/S0377-2217(99)00007-7
[52] Wu, D., Birge, J.,(2011). Serial chain merger evaluation model and application to mortgage banking. Decision Sciences 43 (1), 5-360. https://doi.org/10.1111/j.1540-5915.2011.00340.x
[53] Yang, G., Ren, X., Khoveyni, M., Eslami, R., (2020). Directional congestion in the framework of data envelopment analysis. Journal of Management Science and Engineering 5 (1), 57-75. https://doi.org/10.1016/j.jmse.2020.02.001
[54] Yang, Z., Shi, Y., Yan, H., (2017). Analysis on pure e-commerce congestion e ect, productivity e ect and pro tability in China. Socio-Economic Planning Sciences 57, 35-49. DOI: 10.1016/j.seps.2016.08.002
[55] Zenodin, E., Ghobadi, S., (2020). Merging decision-making units under intertemporal dependence. IMA Journal of Management Mathematics 31 (2), 139-16. https://doi.org/10.1093/imaman/dpz005
[56] Zhang, Y. J., Liu, J. Y., Su, B., (2020). Carbon congestion e ects in china's industry: Evidence from provincial and sectoral levels. Energy Economics 86, 104635. DOI:10.1016/j.eneco.2019.104635