[2] Barlow, R. E, & Campo, R. (1975), Total Time on Test Processes and Applications to Failure Data Analysis, In:Reliability and Fault Tree Analysis.SIAM,Philadelphia,PA.
[3] Barlow, R. E, & Proschan, F. (1975). Statistical theory of reliability and life testing: probability models. Florida State Univ Tallahassee.
[6] Chakraborty, S, & Pradhan, B. (2023). On weighted cumulative Tsallis residual and past entropy measures. Communications in Statistics-Simulation and Computation, 52(5), 2058{2072.
https://doi.org/10.1080/03610918.2021.1897623
[7] Esfahani, M, Amini, M, & Mohtashami, Borzadaran, G. R. (2021). On the applications of total time on test transform in reliability. Journal of Statistical Sciences, 15(1), 1{23.
https://doi.org/10.52547/jss.15.1.1
[8] Esfahani, M., Mohtashami-Borzadaran, GR, & Amini, M. (2023). Theoretical aspects of total time on test transform of weighted variables and applications. Kybernetika, 59(2), 209-23 doi:10.14736/kyb-2023-2-02093.
[10] Gamiz, M. L., Nozal-Canadas, R, & Raya-Miranda, R. (2020). TTT-SiZer: A graphic tool for aging trends recognition. Reliability Engineering and System Safety, 202, 107010.
https://doi.org/10.1016/j.ress.2020.107010
[11] Jewitt, I. (1989). Choosing between risky prospects: the characterization of comparative statics results, and location independent risk. Management Science, 35(1), 60{70.
https://doi.org/10.1287/mnsc.35.1.60
[13] Klefsjo, B. (1982). On aging properties and total time on test transforms. Scandinavian Journal of Statistics, 37{41.
[14] Knopik, L. (2005). Some results on the ageing class. Control and Cybernetics, 34(4), 1175{1180.
[15] Kochar, S. C., Li, X, & Shaked, M. (2002), The total time on test transform and the excess wealth stochastic orders of distributions, Advances in Applied Probability, 34, 826{845.
https://doi.org/10.1239/aap/1037990955
[17] Marshall, A. W., & Proschan, F. (1964). An inequality for convex functions involving majorization (p. 0008). Mathematics Research Laboratory, Boeing Scienti c Research Laboratories.
[18] Nair, N. U., Sankaran, PG, & Balakrishnan, N. (2013), Quantile-Based Reliability Analysis, Basel: Birkhauser
[19] Nguyen, Thuan, & Nguyen, Thinh. (2020). A linear time partitioning algorithm for frequency weighted impurity functions. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (5375{5379). IEEE.
https://doi.org/10.1109/ICASSP40776.2020.9054763
[20] Nichols, M. D., & Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality and reliability engineering international, 22(2), 141{151.
https://doi.org/10.1002/qre.691
[21] Patil, G. P. (2014). Weighted distributions. Wiley StatsRef: Statistics Reference online.
[23] Rao, C. R. (1965). On discrete distributions arising out of methods of ascertainment. Sankhya: The Indian Journal of Statistics, Series A, 311{324.
[24] Saghir, A., Hamedani, GG, Tazeem, S., & Khadim, A. (2017). Weighted distributions: A brief review, perspective and characterizations. International Journal of Statistics and Probability, 7(1), 39{71.
https://doi.org/10.5539/ijsp.v6n3p109
[25] Shaked, M., & Shanthikumar, J. G. (2007), Stochastic Orders, Springer Science and Business Media.
[26] Shaked, M., Sordo, MA, & Suarez-Llorens, A. (2010). A class of location-independent variability orders, with applications. Journal of applied probability, 47(2), 407{425.
https://doi.org/10.1239/jap/1276784900
[27] Sordo, M. A. (2009). On the relationship of location-independent riskier order to the usual stochastic order. Statistics and Probability Letters, 79(2), 155{157.
https://doi.org/10.1016/j.spl.2008.07.033