[1] Akram, G., Sadaf, M., & Khan, M. A. U. (2022). Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik, 251, 168163.
[2] Aziz, K. H. A. N., Abbas, K. H. A. N., & Sinan, M. (2022). Ion temperature gradient modes driven soliton and shock by reduction perturbation method for electron-ion magneto-plasma. Mathematical Modelling and Numerical Simulation with Applications, 2(1), 1-12.
[3] Cui, P. (2021). Bilinear form and exact solutions for a new extended (2+ 1)-dimensional Boussinesq equation. Results in Physics, 22, 103919.
[4] Darwish, A., Ahmed, H. M., Ammar, M., Ali, M. H., & Arnous, A. H. (2022). General Solitons and other solutions for coupled system of nonlinear Schrödinger’s equation in magneto-optic waveguides with anti-cubic law nonlinearity by using improved modified extended tanh-function method. Optik, 251, 168369.
[5] Duran, S. (2021). Breaking theory of solitary waves for the Riemann wave equation in fluid dynamics. International Journal of Modern Physics B, 35(09), 2150130.
[6] Duran, S., Yokuş, A., & Durur, H. (2021). Surface wave behavior and refraction simulation on the ocean for the fractional Ostrovsky–Benjamin–Bona–Mahony equation. Modern Physics Letters B, 35(31), 2150477.
[7] Eskandar, S., & Hoseini, S.M. (2017). Nearly solitons for a perturbed higher-order nonlinear Schrodinger equation. J. Mahani math. res. 6(1), pp.43-56.
[8] Ghanbari, B. (2021). Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics. Results in Physics, 29, 104689.
[9] Griffiths, G. W. (2012). Hirota Direct Method. City University, London.
[10] Hajiaghasi, S., & Azami, S. (2023). Gradient Ricci Bourguignon solitons on perfect fluid space-times. Journal of Mahani Mathematical Research, 1-12.
[11] He, J., Xu, S., & Porsezian, K. (2012). N-order bright and dark rogue waves in a resonant erbium-doped fiber system. Physical Review E, 86(6), 066603.
[12] Hu, W. Q., Gao, Y. T., Jia, S. L., Huang, Q. M., & Lan, Z. Z. (2016). Periodic wave, breather wave and travelling wave solutions of a (2+ 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas. The European Physical Journal Plus, 131, 1-19.
[13] Isah, M. A. (2023). A novel technique to construct exact solutions for the Complex Ginzburg-Landau equation using quadratic-cubic nonlinearity law. Mathematics in Engineering, Science & Aerospace (MESA), 14(1).
[14] Isah, M. A., Isah, I., Hassan, T. L., & Usman, M. (2021). Some characterization of osculating curves according to darboux frame in three dimensional euclidean space. International Journal of Advanced Academic Research, 7(12), 47-56.
[15] Isah, M. A., & Kulahci, M. A. (2019). Involute Curves in 4-dimensional Galilean space G4. In Conference Proceedings of Science and Technology (Vol. 2, No. 2, pp. 134-141). Murat TOSUN.
[16] Isah, M. A., Yokus, A., & Kaya, D. (2024). Exploring the influence of layer and neuron configurations on Boussinesq equation solutions via a bilinear neural network framework. Nonlinear Dynamics, 1-17.
https://doi.org/10.1007/s11071-024-09708-3
[17] Isah, M. A., Yokus, A., & Kaya, D. (2024). Bilinear neural network method for obtaining the exact analytical solutions to nonlinear evolution equations and its application to KdV equation. Khayyam Journal of Mathematics. Accepted paper.
[18] Isah, M. A., & Yokus, A. (2023). Optical solitons of the complex Ginzburg-Landau equation having dual power nonlinear form using φ6-model expansion approach. Mathematical Modelling and Numerical Simulation with Applications, 3(3), 188-215.
[19] Isah, M. A., & Yokus, A. (2022). Application of the newly φ6- model expansion approach to the nonlinear reaction-diffusion equation. Open Journal of Mathematical Sciences. 6, 269-280. doi:10.30538/oms2022.0192
[20] Isah, M. A., & Yokus, A. (2023). Rogue waves and stability analysis of the new (2+ 1)-KdV equation based on symbolic computation method via Hirota bilinear form. In 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA) (pp. 1-6). IEEE.
[21] Isah, M. A., & Yokus, A. (2024). Nonlinear Dispersion Dynamics of Optical Solitons of Zoomeron Equation with New φ6-Model Expansion Approach. Journal of Vibration Testing and System Dynamics, 8(03), 285-307.
[22] Isah, I., Isah, M. A., Baba, M. U., Hassan, T. L., & Kabir, K. D. (2021). On integrability of silver Riemannian structure. International Journal of Advanced Academic Research, 7(12), 2488-9849.
[23] Izadi, M., Yadav, S. K., & Methi, G. (2024). Two efficient numerical techniques for solutions of fractional shallow water equation. Partial Differential Equations in Applied Mathematics, 9, 100619.
[24] Jin-Ping, Y. (2001). Fission and fusion of solitons for the (1+ 1)-dimensional Kupershmidt equation. Communications in Theoretical Physics, 35(4), 405.
[25] Kaya, D., Yokuş, A., & Demiroğlu, U. (2020). Comparison of exact and numerical solutions for the Sharma–Tasso–Olver equation. Numerical solutions of realistic nonlinear phenomena, 53-65.
[26] Li, L., & Xie, Y. (2021). Rogue wave solutions of the generalized (3+ 1)-dimensional Kadomtsev–Petviashvili equation. Chaos, Solitons & Fractals, 147, 110935.
[27] Liu, J. G., Tian, Y., & Zeng, Z. F. (2017). New exact periodic solitary-wave solutions for the new (3+ 1)-dimensional generalized Kadomtsev-Petviashvili equation in multitemperature electron plasmas. AIP Advances, 7(10).
[28] Ma, W. X., & Fan, E. (2011). Linear superposition principle applying to Hirota bilinear
equations. Computers & Mathematics with Applications, 61(4), 950-959.
[29] Ma, W. X., & Zhu, Z. (2012). Solving the (3+ 1)-dimensional generalized KP and BKP
equations by the multiple exp-function algorithm. Applied Mathematics and Computation,
218(24), 11871-11879.
[30] Mohammad, A. A., & Can, M. (1996). Painlevé analysis and symmetries of the Hirota–
Satsuma equation. Journal of Nonlinear Mathematical Physics, 3(1-2), 152-155.
[31] Myint-U, T., & Debnath, L. (2007). Linear partial differential equations for scientists
and engineers. Springer Science & Business Media.
[32] Rosenau, P. (2005). Communications-WHAT IS... a Compacton?. Notices of the American
Mathematical Society, 52(7), 738-739.
[33] Rosenau, P. (1994). Nonlinear dispersion and compact structures. Physical Review Letters,
73(13), 1737.
[34] Rosenau, P., & Hyman, J. M. (1993). Compactons: solitons with finite wavelength.
Physical Review Letters, 70(5), 564.
[35] Tarla, S., Ali, K. K., & Yusuf, A. (2023). Exploring new optical solutions for nonlinear
Hamiltonian amplitude equation via two integration schemes. Physica Scripta, 98(9),
095218.
[36] Tarla, S., Ali, K. K., Yilmazer, R., & Yusuf, A. (2022). New behavior of tsunami and
tidal oscillations for Long-and short-wave interaction systems. Modern Physics Letters
B, 36(23), 2250116.
[37] Tarla, S., Ali, K. K., Yusuf, A., Yılmazer, R., & Alquran, M. (2022). New explicit wave
profiles of kundu-mukherjee-naskar equation through jacobi elliptic function expansion
method.
[38] Wazwaz, A. M. (2008). Multiple-front solutions for the Burgers–Kadomtsev–Petviashvili
equation. Applied mathematics and computation, 200(1), 437-443.
[39] Wazwaz, A. M. (2012). Multiple-soliton solutions for a (3+ 1)-dimensional generalized
KP equation. Communications in Nonlinear Science and Numerical Simulation, 17(2),
491-495.
[40] Wang, X. B., Tian, S. F., Yan, H., & Zhang, T. T. (2017). On the solitary waves, breather
waves and rogue waves to a generalized (3+ 1)-dimensional Kadomtsev–Petviashvili
equation. Computers & Mathematics with Applications, 74(3), 556-563.
[41] Wang, S. (2022). Novel multi-soliton solutions in (2+ 1)-dimensional PT-symmetric
couplers with varying coefficients. Optik, 252, 168495.
[42] Wang, S., Tang, X. Y., Lou, S& . Y. (2004). Soliton fission and fusion: Burgers equation
and Sharma–Tasso–Olver equation. Chaos, Solitons & Fractals, 21(1), 231-239.
[43] Weiss, J. (1985). Modified equations, rational solutions, and the Painlevé property for
the Kadomtsev–Petviashvili and Hirota–Satsuma equations. Journal of mathematical
physics, 26(9), 2174-2180.
[44] Yan, Z., & Konotop, V. V. (2009). Exact solutions to three-dimensional generalized nonlinear
Schrödinger equations with varying potential and nonlinearities. Physical Review
E, 80(3), 036607.
[45] Yang, Q., & Zhang, H. (2021). On the exact soliton solutions of fifth-order Korteweg-de
Vries equation for surface gravity waves. Results in Physics, 26, 104424.
[46] Yokuş, A. (2021). Simulation of bright–dark soliton solutions of the Lonngren wave
equation arising the model of transmission lines. Modern Physics Letters B, 35(32),
2150484.
[47] Yokuş, A., Durur, H., Abro, K. A., & Kaya, D. (2020). Role of Gilson–Pickering equation
for the different types of soliton solutions: a nonlinear analysis. The European Physical
Journal Plus, 135, 1-19.
[48] Yokuş, A., Durur, H., Duran, S., & Islam, M. T. (2022). Ample felicitous wave structures
for fractional foam drainage equation modeling for fluid-flow mechanism. Computational
and Applied Mathematics, 41(4), 174.
[49] Yokus, A., & Isah, M. A. (2023). Dynamical behaviors of different wave structures to the
Korteweg–de Vries equation with the Hirota bilinear technique. Physica A: Statistical
Mechanics and its Applications, 622, 128819.
[50] Yokus, A., & Isah, M. A. (2023). Stability analysis and soliton solutions of the nonlinear
evolution equation by homoclinic technique based on Hirota bilinear form. In 2023 International
Conference on Fractional Differentiation and Its Applications (ICFDA) (pp.
1-6). IEEE.
[51] Yokus, A., & Isah, M. A. (2022). Stability analysis and solutions of (2+ 1)-Kadomtsev–
Petviashvili equation by homoclinic technique based on Hirota bilinear form. Nonlinear
Dynamics, 109(4), 3029-3040.
[52] Zheng-De, D., Mu-Rong, J., Qing-Yun, D., & Shao-Lin, L. (2006). Homoclinic bifurcation
for Boussinesq equation with even constraint. Chinese Physics Letters, 23(5), 1065.
[53] Zheng-De, D., Zhen-Jiang, L., & Dong-Long, L. (2008). Exact periodic solitary-wave
solution for KdV equation. Chinese Physics Letters, 25(5), 1531.
[54] Zhang, Y., & Ma, W. X. (2015). Rational solutions to a KdV-like equation. Applied
Mathematics and Computation, 256, 252-256.