Neighborhood version of third Zagreb index of trees

Document Type : Research Paper

Author

Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan, I.R. Iran

Abstract

For a graph $G$, the third neighborhood degree index of $G$ is defined as: $$ND_3(G)=\sum_{ab\in E(G)}\delta_G(a)\delta_G(b)\Big(\delta_G(a)+\delta_G(b)\Big),$$ where $\delta_G(a)$ represents the sum of degrees of all neighboring vertices of vertex $a$. In this short paper, we establish a new lower bound on the third neighborhood degree index of trees and characterize the extremal trees achieving this bound.

Keywords

Main Subjects


[1] Alwardi, A., Alqesmah, A., Rangarajan, R., & Cangul, I.N. (2018). Entire Zagreb indices of graphs. Discrete Math. Algorithm. Appl., 10(3), Article ID 1850037, 16 pages. https://doi.org/10.1142/S1793830918500374
[2] Borovicanin, B., Das, K. C., Furtula, B., & Gutman, I. (2017). Bounds for Zagreb indices. MATCH Commun. Math. Comput. Chem., 78(1), 17{100.
[3] Dehgardi, N., & Aram, H. (2021). Bounds on the  rst leap Zagreb index of trees. Carpathian Math. Publ., 13(2), 377{385. https://doi.org/10.15330/cmp.13.2.377-385
[4] Dehgardi, N., & Liu, J-B. (2021). Lanzhou index of trees with  xed maximum degree. MATCH Commun. Math. Comput. Chem., 86(1), 3{10.
[5] Gutman, I., Furtula, B., Vukicevic, k., & Popivoda, G. (2015). On Zagreb indices and coindices. MATCH Commun. Math. Comput. Chem., 74, 5{16.
[6] Gutman, I., Milovanovic, E., & Milovanovic, I. (2020). Beyond the Zagreb indices. AKCE Int. J. Graphs Comb., 17(1), 74{85. https://doi.org/10.1016/j.akcej.2018.05.002
[7] Gutman, I., Ruscic, B., Trinajstic, N., & Wilcox, C. F. (1975). Graph theory and molecular orbitals. XII. acyclic polyenes. J. Chem. Phys., 62(9), 3399{3405. https://doi.org/10.1063/1.430994
[8] Gutman, I., & Trinajstic, N. (1972). Graph theory and molecular orbitals. total -electron energy of alternant hydrocarbons. Chem. Phys. Lett., 17(4), 535{538. https://doi.org/10.1016/0009-2614(72)85099-1
[9] Ilic, A., & Zhou, B. (2012). On reformulated Zagreb indices. Discrete Appl. Math., 160(3), 204{209. https://doi.org/10.1016/j.dam.2011.09.021
[10] Ismail, R., Azeem, M., Shang, Y., Imran, M., & Ahmad, A. (2023). A uni ed approach for extremal general exponential multiplicative Zagreb indices. Axioms, 12, 675. https://doi.org/10.3390/axioms12070675
[11] Luo, L., Dehgardi, N., & Fahad, A. (2020). Lower bounds on the entire Zagreb indices of trees. Discrete Dyn. Nat. Soc., 2020, Article ID 8616725, 8 pages. https://doi.org/10.1155/2020/8616725
[12] Milicevic, A., Nikolic, S., & Trinajstic, N. (2004). On reformulated Zagreb indices. Mol. Divers., 8(4), 393{399.
[13] Mondal, S., De, N., & Pal, A. (2021). On neighborhood Zagreb index of product graphs. J. Mol. Struct., 1223, 129210. https://doi.org/10.1016/j.molstruc.2020.129210
[14] Mondal, S., De, N., & Pal, A. (2019). On some new neighborhood degree based indices. Acta Chemica Iasi., 27, 31{46. DOI: 10.2478/achi-2019-0003
[15] Mondal, S., Dey, A., De, N., & Pal, A. (2021). QSPR analysis of some novel neighbourhood degree-based topological descriptors. Complex Intell. Syst., 7, 977{996. https://doi.org/10.1007/s40747-020-00262-0
[16] Mondal, S., De, N., & Pal, A. (2021). Neighborhood degree sum-based molecular descriptors of fractal and cayley tree dendrimers. Eur. Phys. J. Plus, 136, 1{37. https://doi.org/10.1140/epjp/s13360-021-01292-4
[17] Mondal, S., De, N., Pal, A., & Gao, W. (2021). Molecular descriptors of  * some chemicals that prevent covid-19. Curr. Org. Synth., 18, 729{741. DOI:10.2174/1570179417666201208114509
[18] Mondal, S., Imran, M., De, N., & Pal, A. (2021). Neighborhood m-polynomial of titanium compounds. Arab. J. Chem., 14, 103244. https://doi.org/10.1016/j.arabjc.2021.103244
[19] Mondal, S., Some, B., Pal, A., & Das, K.C. (2022). On neighborhood inverse sum indeg energy of molecular graphs. Symmetry, 14, 2147. https://doi.org/10.3390/sym14102147
[20] Naji, A.M., Soner, N.D., & Gutman, I. (2017). On leap Zagreb indices of graphs. Commun. Comb. Optim., 2(2), 99{117. DOI: 10.22049/cco.2017.25949.1059
[21] Ramane, H.S., Pisea, K.S., Jummannaverb, R.B., & Patila, D.D. (2021). Applications of neighbors degree sum of a vertex on zagreb indices. MATCH Commun. Math. Comput. Chem., 85, 329{348.
[22] Raza, Z., Akhter, S., & Shang, Y. (2023). Expected value of  rst Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network. Front. Chem., 10, 1067874. https://doi.org/10.3389/fchem.2022.1067874
[23] Rasi, R., Sheikholeslami, S. M., & Behmaram, A. (2017). An upper bound on the  rst Zagreb index and coindex in trees. Iranian J. Math. Chem., 8, 71{82. DOI:10.22052/ijmc.2017.42995
[24] Shao, Z., Gutman, I., Li, Z., Wang, S., & Wu, P., (2018). Leap Zagreb indices of trees and unicyclic graphs. Commun. Comb. Optim., 3(2), 179{194. DOI:10.22049/CCO.2018.26285.1092
[25] Vukicevic, D., Li, Q., Sedlar, J., & Doslic, T. (2018). Lanzhou Index. MATCH Commun. Math. Comput. Chem., 80(3), 863{876.
[26] Xu, K., & Hua, H. (2012). A uni ed approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs. MATCH Commun. Math. Comput. Chem., 68(1), 241{256