Zip and weak zip algebras in a congruence-modular variety

Document Type : Special Issue Dedicated to Prof. Esfandiar Eslami

Author

Faculty of Mathematics and Computer Science, Bucharest University, Bucharest, Romania

Abstract

The zip (commutative) rings, introduced by Faith and Zelmanowitz, generated a fruitful line of investigation in ring theory. Recently, Dube, Blose and Taherifar developed an abstract theory of zippedness by means of frames. Starting from some ideas contained in their papers, we define and study the zip and weak zip algebras in a semidegenerate congruence-modular variety $\mathcal{V}$. We obtain generalizations of some results existing in the literature of zip rings and zipped frames. For example, we prove that a neo-commutative algebra $A\in \mathcal{V}$ is a weak zip algebra if and only if the frame $RCon(A)$ of radical congruences of $A$ is a zipped frame (in the sense of Dube and Blose). We study the way in which the reticulation functor preserves the  zippedness property. Using the reticulation and a Hochster's theorem we prove that  a neo-commutative algebra $A\in \mathcal{V}$ is a weak zip algebra if and only if the minimal prime spectrum $Min(A)$ of $A$ is a finite space.

Keywords

Main Subjects


[1] Agliano, P. (1993). Prime spectra in modular varieties. Algebra Universalis, 30, 581 - 597. https://doi.org/10.1007/BF01195383
[2] Atiyah, M. F. & MacDonald, I. G. (1969). Introduction to Commutative Algebra. Addison-Wesley Publ. Comp.
[3] Banaschewski, B., & Pultr, A. (1996). Booleanization. Cahiers de Topology and Geometrie Di erentielle Categoriques, 37(1), 41-60. http://eudml.org/doc/91572
[4] Belluce, L. P. (1991). Spectral spaces and non-commutative rings. Commun. Algebra, 19(7), 1855-1865. https://doi.org/10.1080/00927879108824234
[5] Birkho , G. (1967). Lattice Theory. AMS Collocquium Publ., Vol. 25 (3rd ed.)
[6] Burris, S., & Sankappanavar, H. P. (1981). A Course in Universal Algebra. Graduate Texts in Mathematics, 78, Springer Verlag.
[7] Dube, T., & Blose, S. (2023). Algebraic frames in which dense elements are above dense compact elements. Algebra Universalis, 88(3). https://doi.org/10.1007/s00012-022-00799-w
[8] Dube, T., & Taherifar, A. (2024). Zip rings (resp. czip rings) and some applications. Topology and its Applications, 344, 108799. https://doi.org/10.1016/j.topol.2023.108799
[9] Faith, C. (1989). Rings with zero intersection property: Zip rings. Publicationes Mathematicae, 33(2), 329-338.
[10] Fresee, R., & McKenzie, R. (1987). Commutator Theory for Congruence Modular Varieties. Cambridge Univ. Press.
[11] Galatos, N., Jipsen, P., Kowalski, T., & Ono, H.(2007). Residuated Lattices: An Algebraic Glimpse at Structural Logics. Studies in Logic and The Foundation of Mathematics, 151, Elsevier.
[12] Georgescu, G. (2023). Zipped coherent quantales. J. Algebraic Hyperstruct. Log. Algebra, 4(1), 61-79. https://doi.org/10.52547/HATEF.JAHLA.4.1.5
[13] Georgescu, G., & Muresan, C. (2018). The reticulation of a universal algebra. Scienti c Annals of Computer Science, 2(2), 67 - 113. https://doi.org/10.7561/SACS.2018.1.67
[14] Georgescu, G., Kwuida, L., & Muresan, C. (2021). Functorial properties of the reticulation of a universal algebra. J. Applied Logic, 8(5), 1123 - 1168. DOI: 10.24451/arbor.15214
[15] Georgescu, G. (May, 2022). Reticulation functor and the transfer properties. ArXiv:2205.02174v1[math.LO]
[16] Georgescu, G., & Voiculescu, I. (1989). Some abstract maximal ideal-like spaces. Algebra Universalis, 26, 90 - 102.  https://doi.org/10.1007/BF01243875
[17] Georgescu, G. (2022). Reticulation of quasi-commutative algebras. J. Mahani Math. Res. Center, 12(2), 115-136.  https://doi.org/10.22103/JMMR.2022.20133.1328
[18] Georgescu, G. (2023). Semidegenerate congruence-modular algebras admitting a reticulation. Scienti c Annals of Computer Science; Iasi, 33(1), 5-34. https://doi.org/10.7561/SACS.2023.1.5
[19] Hochster, M. (1969). Prime ideals structures in commutative rings. Trans. Amer. Math. Soc. 142, 43 - 60. https://doi.org/10.2307/1995344
[20] Johnstone, P. T. (1962). Stone Spaces. Cambridge Univ. Press.
[21] Kaplansky, I. (1974). Topics in Commutative Ring Theory. Lecture Notes. University of Chicago.
[22] Kollar, J. (1979). Congruences and one - element subalgebras. Algebra Universalis, 9, 266 - 276. https://doi.org/10.1007/BF02488038
[23] Leroy, A., & Matczuk, J. (2016). Zip property of certain ring extensions. J. Pure Appl. Algebra, 220(1), 335-345. https://doi.org/10.1016/j.jpaa.2015.06.015
[24] Martinez, J. (2013). An innocent theorem of Banaschewski, applied of an unsuspecting theorem of De Marco, and the aftermath thereof. Forum Mathematicum, 25, 565-596. https://doi.org/10.1515/form.2011.129
[25] Ouyang, L. (2009). Ore extensions of zip rings. Glasgow Mathematical Journal, 51(3), 525-537. https://doi.org/10.1017/S0017089509005151
[26] Ouyang, L. & Birkenmeier, G. F. (2012).Weak annihilators over extension rings. Bulletin of the Malayasian Mathematical Sciences Society, 35(2), 345-357.
[27] Picado, J., & Pultr, A. (2012). Frames and locales: Topology without points. Frontiers in Mathematics, Springer, Bassel.
[28] Simmons, H. (1980). Reticulated rings. J. Algebra, vol.66(1), 169 - 192. https://doi.org/10.1016/0021-8693(80)90118-0
29] Zelmanowitz, J. M. (1976). The  nite intersection property on annihilators right ideals. Proceedings of the American Mathematical Society, 57, 213-216. DOI: 10.1090/S0002-9939-1976-0419512-6
Volume 13, Issue 4 - Serial Number 29
Special issue dedicated to Professor Esfandiar Eslami
December 2024
Pages 109-130
  • Receive Date: 18 April 2024
  • Revise Date: 30 May 2024
  • Accept Date: 04 August 2024