[2] Atiyah, M. F. & MacDonald, I. G. (1969). Introduction to Commutative Algebra. Addison-Wesley Publ. Comp.
[3] Banaschewski, B., & Pultr, A. (1996). Booleanization. Cahiers de Topology and Geometrie Di erentielle Categoriques, 37(1), 41-60.
http://eudml.org/doc/91572
[5] Birkho , G. (1967). Lattice Theory. AMS Collocquium Publ., Vol. 25 (3rd ed.)
[6] Burris, S., & Sankappanavar, H. P. (1981). A Course in Universal Algebra. Graduate Texts in Mathematics, 78, Springer Verlag.
[9] Faith, C. (1989). Rings with zero intersection property: Zip rings. Publicationes Mathematicae, 33(2), 329-338.
[10] Fresee, R., & McKenzie, R. (1987). Commutator Theory for Congruence Modular Varieties. Cambridge Univ. Press.
[11] Galatos, N., Jipsen, P., Kowalski, T., & Ono, H.(2007). Residuated Lattices: An Algebraic Glimpse at Structural Logics. Studies in Logic and The Foundation of Mathematics, 151, Elsevier.
[14] Georgescu, G., Kwuida, L., & Muresan, C. (2021). Functorial properties of the reticulation of a universal algebra. J. Applied Logic, 8(5), 1123 - 1168. DOI: 10.24451/arbor.15214
[15] Georgescu, G. (May, 2022). Reticulation functor and the transfer properties. ArXiv:2205.02174v1[math.LO]
[18] Georgescu, G. (2023). Semidegenerate congruence-modular algebras admitting a reticulation. Scienti c Annals of Computer Science; Iasi, 33(1), 5-34.
https://doi.org/10.7561/SACS.2023.1.5
[20] Johnstone, P. T. (1962). Stone Spaces. Cambridge Univ. Press.
[21] Kaplansky, I. (1974). Topics in Commutative Ring Theory. Lecture Notes. University of Chicago.
[24] Martinez, J. (2013). An innocent theorem of Banaschewski, applied of an unsuspecting theorem of De Marco, and the aftermath thereof. Forum Mathematicum, 25, 565-596.
https://doi.org/10.1515/form.2011.129
[26] Ouyang, L. & Birkenmeier, G. F. (2012).Weak annihilators over extension rings. Bulletin of the Malayasian Mathematical Sciences Society, 35(2), 345-357.
[27] Picado, J., & Pultr, A. (2012). Frames and locales: Topology without points. Frontiers in Mathematics, Springer, Bassel.
29] Zelmanowitz, J. M. (1976). The nite intersection property on annihilators right ideals. Proceedings of the American Mathematical Society, 57, 213-216. DOI: 10.1090/S0002-9939-1976-0419512-6