[1] Abbott, J. C. (1969). Sets, lattices and Boolean Algebras. Allyn and Bacon.
[2] Borumand Saeid, A. & Mohtashamnia, N. (2012). Stabilizer in Residuated Lattices. U.P.B. Scienti c Bulletin, Series A, 74(2) ,65-74.
[3] C even, Y. & Ozturk, M.A. (2009). Some Results on Subtraction Algebras. Hacettepe Journal of Mathematics and Statistics, 38(3), 299-304.
[4] C even, Y. (2011). Quotient Subtraction Algebras. International Mathematical Forum, 6(25), 1241-1247.
[5] Haveshki, M.& Mohamadhasani, M. (2010). Stabilizer in BL-Algebras and its Properties. International Mathematical Forum, 5, no. 57, 2809-2816.
[6] Iorgulescu,A. (2008). Algebras of Logic as BCK-algebras. Editura ASE, Bucharest.
[7] Jun,Y.B. & Kim, Y.H. & Roh, E.H. (2004). Ideal Theory of Subtraction Algebras. Scientiae Mathematica Japonicae Online, 397-402.
[8] Jun,Y.B. & Kim, Y.H. (2006). On ideals in subtraction algebras. Sci. Math. Jpn. Online, 1081-1086.
[9] Jun,Y.B. & Kim, Y.H. & Oh, K.A. (2007). Subtraction Algebras with Additional Conditions. Commun. Korean Math. Soc. 22(1), 1-7.
[10] Jun,Y.B. & Kim, Y.H. (2008). Prime and Irreducible Ideals in Subtraction Algebras. International Mathematical Forum, 3(10), 457-462,
[11] Lee, K.J& Jun, Y.B & Kim, Y.H. (2008). Weak forms of subtraction algebras. Bulletin Korean Mathematics Society,45, 437-444.
[12] Schein, B.M. (1992). Di erence Semigroups. Communications in Algebra, 20, 2152-2169.
[14] Zahiri, S. & Borumand Saeid, A. & Eslami, E. (2018). A study of stabilizers in triangle algebras. Mathematica Slovaca, 68, 41-52.
[15] Zelinka, B. (1995). Subtraction Semigroups. Mathematica Bohemica, 120, 445-447.