The prime spectrum of a BCI-algebra

Document Type : Special Issue Dedicated to Prof. Esfandiar Eslami

Authors

1 Department of Mathematics, Behbahan Branch Islamic Azad University, Behbahan, Iran

2 Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

The aim of the present paper is to define the prime spectrum of a BCI-algebra as a generalization of prime spectrum BCK-algebras with respect to prime ideals. The notions of prime spectrum BCI-algebras using prime ideals, and some properties of these concepts are studied. Finally, we attempt to generalize some useful theorems about prime spectra in BCI-algebras instead of commutative BCK-algebras.

Keywords

Main Subjects


[1] Aslam, J., Deeb, E., & Thaheem, A. B. (1993). On Spectral properties of BCK-algebra. Mathematica Japonica, 38, 1121-1128.
[2] Borzooei, R. A., & Zahiri, O. (2012). Prime Ideals in BCI and BCK-algebras. Annals of the University of Craiova, Mathematics and Computer Science Series, 39 (2), 266-276. https://doi.org/10.52846/ami.v39i2.469
[3] Dickmann, M., Schwartz, N., Tressl, M. (2019). Spectral Spaces, Cambridge University Press. https://doi.org/10.1017/9781316543870
[4] Huang, Y. (2006). BCI-algebras. Science Press. Beijing, China.
[5] Imai, Y., & Iseki, K. (1966). On axiom system of propositional calculi. XIV, Japan Academy, 42, 19-22. https://doi.org/10.3792/pja/1195522169
[6] Iseki, K. (1966). An algebra related with a propositional calculus. Japan Academy, 42, 26-29. https://doi.org/10.3792/pja/1195522171
[7] Iseki, K. (1975). On some ideals in BCK-algebras. Math Seminar Notes 3. 42, 65-70. https://doi.org/10.1515/dema-1994-3-409
[8] Hoo, C. S., & Murty, P. V. R. (1987). The ideals of a bounded commutative BCK-algebras. Math. Japon. 32, 723 - 733.
[9] Meng, J., & Jun, Y., Xin, X. (1998). Prime ideal in commutative BCK-algebras. Discussiones Mathematicae, 18, 5-15. https://doi.org/10.7151/dmgaa
[10] Meng, J., & Jun, Y. (1994). BCK-algebras. Kyung Moon Sa Co. Seoul.
[11] Palasinski, M. (1981). Ideal in BCK-algebras which are lower lattices. Bulletin of the Section of Logic, 10(1), 48-50.
[12] Naja , A., & Borumand Saeid, A. (2022). Semi prime BCI-algebras. Scienti c Bulletin Series A, Applied Mathematics and Physics, 11, 19-28. https://doi.org/10.3233/ifs-162148
[13] Romanowska, A. & Traczyk, T. (1980). On commutative BCK-algebras. Math. Japonica, 25(5), 567{583.
Volume 13, Issue 4 - Serial Number 29
Special issue dedicated to Professor Esfandiar Eslami
December 2024
Pages 143-151
  • Receive Date: 16 May 2024
  • Revise Date: 26 August 2024
  • Accept Date: 27 September 2024