Exploring the properties of the zero-divisor graph of direct product of $\ast$-rings

Document Type : Special Issue: First Joint IIIMT-Algebra Forum Conference 2023

Authors

1 School of Computational Sciences, Faculty of Science and Technology, JSPM University, Pune, India

2 Department of Mathematics, Aligarh Muslim University, Aligarh, India

Abstract

In this paper, we delve into the study of zero-divisor graphs in rings equipped with an involution. Specifically, we focus on abelian Rickart $\ast$-rings. Our investigation revolves around characterizing the diameter of a zero-divisor graph in the context of the direct product $\mathcal{S}_1 \oplus \mathcal{S}_2$, in relation to the diameters observed in the zero-divisor graphs of the constituent $\ast$-rings $\mathcal{S}_1$ and $\mathcal{S}_2$.

Keywords

Main Subjects


[1] Alanazi, A. M., Nazim, M., & Rehman, N. (2021). Planar, outerplanar, and toroidal graphs of the generalized zero-divisor graph of commutative rings. J. Math., 2021, 4828579, 7 pages. https://doi.org/10.1155/2021/4828579
[2] Akbari,S. & Mohammadian, A. (2004). On the zero-divisor graph of a commutative ring. J. Algebra, 274, 847-855. https://doi.org/10.1016/S0021-8693(03)00435-6
[3] Anderson, D. F. & Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. J. Algebra, 217, 434-447. https://doi.org/10.1006/jabr.1998.7840
[4] Anderson, D. D. & M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993) 500-514. https://doi.org/10.1006/jabr.1993.1171
[5] Patil, A. & Waphare, B. N. (2018). The zeto-divisor graph of a ring with involution. J. Algebra and its Appl., 16 (11), 1-17. https://doi.org/10.1142/S0219498818500500
[6] Beck, I. (1988). Coloring of commutative rings. J. Algebra, 116, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
[7] Berberian, S. K. (1972). Bear  􀀀 ring. Springer - Verlag, Berlin, New York.
[8] DeMeyer, F., McKenzia, T. & Schneider, K. (2002). The zero-divisor graph of a commutative semigroup. Semigroup Fourm, 65(2) 206-214. https://doi.org/10.1007/s002330010128
[9] Nazim, M., Nisar, J. & Rehman, N. (2021). On domination in zero-divisor graphs of rings with involution. Bull. Korean Math. Soc., 58(6), 1409-1418. https://doi.org/10.4134/BKMS.b200968
[10] Nazim, M. & Rehman, N. (2022). On the essential annihilating-ideal graph of commutative rings. ARS Math. Contemp., 22(3), 16 pages. https://doi.org/10.26493/1855-3974.2645.8fc
[11] Nazim, M., Rehman, N., & Mir, S. A. (2023). Some properties of the essential annihilating-ideal graph of commutative rings. Commu. Comb. Opt., 8(4), 715-724. https://doi.org/10.22049/CCO.2022.27827.1365
[12] Rehman, N., Nazim, M. & Selvakumar, K. (2022). On the planarity, genus and crosscap of new extension of zero-divisor graph of commutative rings. AKCE Int. J. Graphs Comb., 19(1), 61-68. https://doi.org/10.1080/09728600.2022.2058437
[13] Rehman, N., Nazim, M., & Selvakumar, K. (2024). On the genus of annihilator intersection graph of commutative rings. Algebraic Structures and their Applications, 11(1) 25-36. https://doi.org/10.22034/as.2023.18830.1573
[14] Redmond, S. P. (2002). The zero divisor graph of a non-commutative ring. Internet. J. Commutative Rings, 1(4) 203-211.
Volume 13, Issue 5 - Serial Number 30
Special Issue: First Joint IIIMT-Algebra Forum Conference 2023
December 2024
Pages 11-20
  • Receive Date: 01 May 2024
  • Revise Date: 01 September 2024
  • Accept Date: 01 November 2024