Vieta-Lucas operational matrix technique for fractional variable-order integro-differential equations

Document Type : Research Paper

Author

Department of Mathematics, University of Saravan, Saravan, Iran

Abstract

The aim of this article is to find an effective method for solving variable-order fractional integro-differential equations. This method transforms the problem into a system of algebraic equations. For this purpose, we first express Vieta-Lucas orthogonal polynomials, then, we express the operational matrices of these polynomials. At this stage, all components of the equation will be expressed in terms of the new shifted Vieta-Lucas operational matrices. After that, by placing these operational matrices in the main equation and using the spectral collocation method, the variable-order fractional integro-differential equation will become an algebraic system. By solving this algebraic system, we will find an approximate solution to the original equation. In the following, an analysis of the error is also presented by preparing some theorems. In the end, in order to express the efficiency and capability of the method, some numerical examples are given. Additionally, for the numerical examples, the condition number, numerical convergence order, and the computed CPU time are evaluated. Based on the obtained results, it was concluded that the proposed method is relatively stable, highly accurate and efficient, and has an appropriate convergence rate.

Keywords

Main Subjects


[1] Agarwal, P., El-Sayed, A. A., & Tariboon, J. (2021). Vieta{Fibonacci operational matrices for spectral solutions of variable-order fractional integro-di erential equations. Journal of Computational and Applied Mathematics, 382, 113063.
https://doi.org/10.1016/j.cam.2020.113063
[2] Ahmed, M., Ahmed, H. F., & Hashem, W. A. (2024). A New Operational Matrices Based-Technique for Fractional Integro Reaction-Di usion Equation Involving Spatiotemporal Variable-Order Derivative. International Journal of Analysis and Applications, 22, 209{209. https://doi.org/10.28924/2291-8639-22-2024-209
[3] Almeida, R., Tavares, D., & Torres, D. F. M. (2019). The variable-order fractional calculus of variations. Springer.
[4] Amin, R., Sitthiwirattham, T., Hafeez, M. B., & Sumelka, W. (2023). Haar collocations method for nonlinear variable order fractional integro-di erential equations. Progr Fract Di er Appl, 9(2), 223{229. http://dx.doi.org/10.18576/pfda/090203
[5] Atanackovic, T., & Pilipovic, S. (2011). Hamilton's principle with variable order fractional derivatives. Fractional Calculus and Applied Analysis, 14(1), 94{109. https://doi.org/10.2478/s13540-011-0007-7
[6] Atkinson, K. (1991). An introduction to numerical analysis. John Wiley & Sons.
[7] Chen, Y.-M., Wei, Y.-Q., Liu, D.-Y., & Yu, H. (2015). Numerical solution for a class of nonlinear variable order fractional di erential equations with Legendre wavelets. Applied Mathematics Letters, 46, 83{88. https://doi.org/10.1016/j.aml.2015.02.010
[8] Cooper, G. R. J., & Cowan, D. R. (2004). Filtering using variable order vertical derivatives. Computers & Geosciences, 30(5), 455{459. https://doi.org/10.1016/j.cageo.2004.03.001
[9] Dehestani, H., & Ordokhani, Y. (2024). A highly accurate wavelet approach for multiterm variable-order fractional multi-dimensional di erential equations. Computational Methods for Di erential Equations. https://doi.org/10.22034/CMDE.2024.62926.2793
[10] Delkhosh, M., & Parand, K. (2018). Numerical solution of the nonlinear integrodi  erential equations of multi-arbitrary Order. Thai Journal of Mathematics, 16(2), 471{488.
[11] Doha, E. H., Abdelkawy, M. A., Amin, A. Z. M., & Baleanu, D. (2018). Spectral technique for solving variable-order fractional Volterra integro-di erential equations. Numerical Methods for Partial Di erential Equations, 34(5), 1659{1677.
https://doi.org/10.1002/num.22233
[12] Doha, E. H., Abdelkawy, M. A., Amin, A. Z. M., & Lopes, A. M. (2018). On spectral methods for solving variable-order fractional integro-di erential equations. Computational and Applied Mathematics, 37, 3937{3950. https://doi.org/10.1007/s40314-017-0551-9
[13] Eghbali, A., Johansson, H., & Saramaki, T. (2013). A method for the design of Farrowstructure based variable fractional-delay FIR  lters. Signal Processing, 93(5), 1341{1348. Elsevier. https://doi.org/10.1016/j.sigpro.2012.11.010
[14] El-Gindy, T. M., Ahmed, H. F., & Melad, M. B. (2022). E ective numerical technique for solving variable order integro-di erential equations. Journal of Applied Mathematics and Computing, 68(4), 2823{2855. https://doi.org/10.1007/s12190-021-01640-8
[15] El-Sayed, A. A., & Agarwal, P. (2019). Numerical solution of multiterm variable-order fractional di erential equations via shifted Legendre polynomials. Mathematical Methods in the Applied Sciences, 42(11), 3978{3991. https://doi.org/10.1002/mma.5627
[16] Ganji, R. M., Jafari, H., & Nemati, S. (2020). A new approach for solving integrodi  erential equations of variable order. Journal of Computational and Applied Mathematics, 379, 112946. https://doi.org/10.1016/j.cam.2020.112946
[17] Ganji, R. M., & Jafari, H. (2019). Numerical solution of variable order integro-di erential equations. Advanced Mathematical Models & Applications, 4(1), 64{69.
[18] Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. JHU Press.
[19] Horadam, A. F. (2000). Vieta Polynomials, The University of New England. Armidaie, Australia.
[20] Izadi, M., Yuzbas, S., & Ansari, K. J. (2021). Application of Vieta{Lucas series to solve a class of multi-pantograph delay di erential equations with singularity. Symmetry, 13(12), 2370. https://doi.org/10.3390/sym13122370
[21] Izadi, M., & Atangana, A. (2024). Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head. Scienti c Reports, 14(1), 3466. https://doi.org/10.1038/s41598-024-53822
[22] Liu, J., Li, X., Wu, L., & others. (2016). An operational matrix technique for solving variable order fractional di erential-integral equation based on the second kind of Chebyshev polynomials. Advances in Mathematical Physics, 2016(1), 6345978. https://doi.org/10.1155/2016/6345978
[23] Odzijewicz, T., Malinowska, A. B., & Torres, D. F. M. (2013). Fractional variational calculus of variable order. Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume, 229, 291{301. https://doi.org/10.1007/978-3-0348-0516-2-16
[24] Oyedepo, T., Ayinde, A. M., & Didigwu, E. N. (2024). Vieta-Lucas polynomial computational technique for Volterra integro-di erential equations. Electronic Journal of Mathematical Analysis and Applications, 12(1), 1{8.
https://doi.org/10.21608/ejmaa.2023.232998.1064
[25] Patnaik, S., Hollkamp, J. P., & Semperlotti, F. (2020). Applications of variable-order fractional operators: a review. Proceedings of the Royal Society A, 476(2234), 20190498. https://doi.org/10.1098/rspa.2019.0498
[26] Pirouzeh, Z., Skandari, M. H. N., Pirbazari, K. N., & Shateyi, S. (2024). A pseudo-spectral approach for optimal control problems of variable-order fractional integro-di erential equations. AIMS Mathematics, 9(9), 23692{23710. doi:
https://doi.org/10.3934/math.20241151
[27] Podlubny, I. (1999). Fractional di erential equations: an introduction to fractional derivatives, fractional di erential equations, to methods of their solution and some of their applications. Mathematics in science and engineering, 198, 1{340.
[28] Pooseh, S., Almeida, R., & Torres, D. F. M. (2013). Numerical approximations of fractional derivatives with applications. Asian Journal of Control, 15(3), 698{712. Wiley Online Library. https://doi.org/10.1002/asjc.617
[29] Rivlin, T. (1969). Introduction to Approximation Theory. JSTOR.
[30] Sahu, P. K., & Routaray, M. (2023). Numerical solution of variable order fractional integro-di erential equations using orthonormal functions. Palestine Journal of Mathematics, 12(1).
[31] Samko, S. (2013). Fractional integration and di erentiation of variable order: an overview. Nonlinear Dynamics, 71, 653{662. https://doi.org/10.1007/s11071-012-0485-0
[32] Samko, S. G., & Ross, B. (1993). Integration and di erentiation to a variable fractional order. Integral transforms and special functions, 1(4), 277{300. Taylor & Francis.
[33] Sarwar, S. (2022). On the existence and stability of variable order Caputo type fractional di erential equations. Fractal and Fractional, 6(2), 51. https://doi.org/10.3390/fractalfract6020051
[34] Sun, H. G., Chang, A., Zhang, Y., & Chen, W. (2019). A review on variable-order fractional di erential equations: mathematical foundations, physical models, numerical methods and applications. Fractional Calculus and Applied Analysis, 22(1), 27{59. https://doi.org/10.1515/fca-2019-0003
[35] Tuan, N. H., Nemati, S., Ganji, R. M., & Jafari, H. (2020). Numerical solution of multivariable order fractional integro-di erential equations using the Bernstein polynomials. Engineering with Computers, 1{9. https://doi.org/10.1007/s00366-020-01142-4
[36] Yi, M., Huang, J., &Wang, L. F. (2013). Operational matrix method for solving variable order fractional integro-di erential equations. CMES-Computer Modeling in Engineering and Sciences, 96(5), 361{377. https://doi.org/10.3970/cmes.2013.096.361
[37] Zaeri, S., Saeedi, H., & Izadi, M. (2017). Fractional integration operator for numerical solution of the integro-partial time fractional di usion heat equation with weakly singular kernel. Asian-European Journal of Mathematics, 10(04), 1750071. https://doi.org/10.1142/S1793557117500711

Articles in Press, Accepted Manuscript
Available Online from 29 January 2025
  • Receive Date: 23 September 2024
  • Revise Date: 22 December 2024
  • Accept Date: 29 January 2025