[1] Agarwal, P., El-Sayed, A. A., & Tariboon, J. (2021). Vieta{Fibonacci operational matrices for spectral solutions of variable-order fractional integro-di erential equations. Journal of Computational and Applied Mathematics, 382, 113063.
https://doi.org/10.1016/j.cam.2020.113063
[2] Ahmed, M., Ahmed, H. F., & Hashem, W. A. (2024). A New Operational Matrices Based-Technique for Fractional Integro Reaction-Di usion Equation Involving Spatiotemporal Variable-Order Derivative. International Journal of Analysis and Applications, 22, 209{209.
https://doi.org/10.28924/2291-8639-22-2024-209
[3] Almeida, R., Tavares, D., & Torres, D. F. M. (2019). The variable-order fractional calculus of variations. Springer.
[4] Amin, R., Sitthiwirattham, T., Hafeez, M. B., & Sumelka, W. (2023). Haar collocations method for nonlinear variable order fractional integro-di erential equations. Progr Fract Di er Appl, 9(2), 223{229.
http://dx.doi.org/10.18576/pfda/090203
[5] Atanackovic, T., & Pilipovic, S. (2011). Hamilton's principle with variable order fractional derivatives. Fractional Calculus and Applied Analysis, 14(1), 94{109.
https://doi.org/10.2478/s13540-011-0007-7
[6] Atkinson, K. (1991). An introduction to numerical analysis. John Wiley & Sons.
[7] Chen, Y.-M., Wei, Y.-Q., Liu, D.-Y., & Yu, H. (2015). Numerical solution for a class of nonlinear variable order fractional di erential equations with Legendre wavelets. Applied Mathematics Letters, 46, 83{88.
https://doi.org/10.1016/j.aml.2015.02.010
[9] Dehestani, H., & Ordokhani, Y. (2024). A highly accurate wavelet approach for multiterm variable-order fractional multi-dimensional di erential equations. Computational Methods for Di erential Equations.
https://doi.org/10.22034/CMDE.2024.62926.2793
[10] Delkhosh, M., & Parand, K. (2018). Numerical solution of the nonlinear integrodi erential equations of multi-arbitrary Order. Thai Journal of Mathematics, 16(2), 471{488.
[11] Doha, E. H., Abdelkawy, M. A., Amin, A. Z. M., & Baleanu, D. (2018). Spectral technique for solving variable-order fractional Volterra integro-di erential equations. Numerical Methods for Partial Di erential Equations, 34(5), 1659{1677.
https://doi.org/10.1002/num.22233
[12] Doha, E. H., Abdelkawy, M. A., Amin, A. Z. M., & Lopes, A. M. (2018). On spectral methods for solving variable-order fractional integro-di erential equations. Computational and Applied Mathematics, 37, 3937{3950.
https://doi.org/10.1007/s40314-017-0551-9
[13] Eghbali, A., Johansson, H., & Saramaki, T. (2013). A method for the design of Farrowstructure based variable fractional-delay FIR lters. Signal Processing, 93(5), 1341{1348. Elsevier.
https://doi.org/10.1016/j.sigpro.2012.11.010
[14] El-Gindy, T. M., Ahmed, H. F., & Melad, M. B. (2022). E ective numerical technique for solving variable order integro-di erential equations. Journal of Applied Mathematics and Computing, 68(4), 2823{2855.
https://doi.org/10.1007/s12190-021-01640-8
[15] El-Sayed, A. A., & Agarwal, P. (2019). Numerical solution of multiterm variable-order fractional di erential equations via shifted Legendre polynomials. Mathematical Methods in the Applied Sciences, 42(11), 3978{3991.
https://doi.org/10.1002/mma.5627
[16] Ganji, R. M., Jafari, H., & Nemati, S. (2020). A new approach for solving integrodi erential equations of variable order. Journal of Computational and Applied Mathematics, 379, 112946.
https://doi.org/10.1016/j.cam.2020.112946
[17] Ganji, R. M., & Jafari, H. (2019). Numerical solution of variable order integro-di erential equations. Advanced Mathematical Models & Applications, 4(1), 64{69.
[18] Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. JHU Press.
[19] Horadam, A. F. (2000). Vieta Polynomials, The University of New England. Armidaie, Australia.
[20] Izadi, M., Yuzbas, S., & Ansari, K. J. (2021). Application of Vieta{Lucas series to solve a class of multi-pantograph delay di erential equations with singularity. Symmetry, 13(12), 2370.
https://doi.org/10.3390/sym13122370
[21] Izadi, M., & Atangana, A. (2024). Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head. Scienti c Reports, 14(1), 3466.
https://doi.org/10.1038/s41598-024-53822
[22] Liu, J., Li, X., Wu, L., & others. (2016). An operational matrix technique for solving variable order fractional di erential-integral equation based on the second kind of Chebyshev polynomials. Advances in Mathematical Physics, 2016(1), 6345978.
https://doi.org/10.1155/2016/6345978
[23] Odzijewicz, T., Malinowska, A. B., & Torres, D. F. M. (2013). Fractional variational calculus of variable order. Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume, 229, 291{301.
https://doi.org/10.1007/978-3-0348-0516-2-16
[24] Oyedepo, T., Ayinde, A. M., & Didigwu, E. N. (2024). Vieta-Lucas polynomial computational technique for Volterra integro-di erential equations. Electronic Journal of Mathematical Analysis and Applications, 12(1), 1{8.
https://doi.org/10.21608/ejmaa.2023.232998.1064
[25] Patnaik, S., Hollkamp, J. P., & Semperlotti, F. (2020). Applications of variable-order fractional operators: a review. Proceedings of the Royal Society A, 476(2234), 20190498.
https://doi.org/10.1098/rspa.2019.0498
[26] Pirouzeh, Z., Skandari, M. H. N., Pirbazari, K. N., & Shateyi, S. (2024). A pseudo-spectral approach for optimal control problems of variable-order fractional integro-di erential equations. AIMS Mathematics, 9(9), 23692{23710. doi:
https://doi.org/10.3934/math.20241151
[27] Podlubny, I. (1999). Fractional di erential equations: an introduction to fractional derivatives, fractional di erential equations, to methods of their solution and some of their applications. Mathematics in science and engineering, 198, 1{340.
[28] Pooseh, S., Almeida, R., & Torres, D. F. M. (2013). Numerical approximations of fractional derivatives with applications. Asian Journal of Control, 15(3), 698{712. Wiley Online Library.
https://doi.org/10.1002/asjc.617
[29] Rivlin, T. (1969). Introduction to Approximation Theory. JSTOR.
[30] Sahu, P. K., & Routaray, M. (2023). Numerical solution of variable order fractional integro-di erential equations using orthonormal functions. Palestine Journal of Mathematics, 12(1).
[32] Samko, S. G., & Ross, B. (1993). Integration and di erentiation to a variable fractional order. Integral transforms and special functions, 1(4), 277{300. Taylor & Francis.
[34] Sun, H. G., Chang, A., Zhang, Y., & Chen, W. (2019). A review on variable-order fractional di erential equations: mathematical foundations, physical models, numerical methods and applications. Fractional Calculus and Applied Analysis, 22(1), 27{59.
https://doi.org/10.1515/fca-2019-0003
[35] Tuan, N. H., Nemati, S., Ganji, R. M., & Jafari, H. (2020). Numerical solution of multivariable order fractional integro-di erential equations using the Bernstein polynomials. Engineering with Computers, 1{9.
https://doi.org/10.1007/s00366-020-01142-4
[36] Yi, M., Huang, J., &Wang, L. F. (2013). Operational matrix method for solving variable order fractional integro-di erential equations. CMES-Computer Modeling in Engineering and Sciences, 96(5), 361{377.
https://doi.org/10.3970/cmes.2013.096.361
[37] Zaeri, S., Saeedi, H., & Izadi, M. (2017). Fractional integration operator for numerical solution of the integro-partial time fractional di usion heat equation with weakly singular kernel. Asian-European Journal of Mathematics, 10(04), 1750071.
https://doi.org/10.1142/S1793557117500711