[2] Alias, L.J., Gurbuz, N. (2006), An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata, 121, 113-127.
http://doi:10.1007/s10711-006-9093-9.
[3] Arvanitoyeorgos, A., Defever, F., Kaimakamis, G., Papantoniou, B. J. (2007), Biharmonic Lorentz hypersurfaces in E4
1 , Paci c J. Math., 229, 293-306.
http://doi:10.2140/pjm.2007.229.293
[7] Gupta, R. S. (2016), Biharmonic hypersurfaces in E5s , An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.), 112:2, 585-593.
[8] Hasanis, T. and Vlachos, T. (1995) Hypersurfaces in E4 with harmonic mean curvature vector eld, Math. Nachr., 172, 145-169. doi:10.1002/mana.19951720112.
[9] Jiang, G. Y. (1987), The conservation law for 2-harmonic maps between Riemannian manifolds, Acta Math. Sin., 30, 220{225.
[11] Lucas, P. and Ramirez-Ospina, H. F. (2011), Hypersurfaces in the Lorentz-Minkowski space satisfying Lk = A + b, Geom. Dedicata, 153, 151-175.
http://doi:10.1007/s10711-010-9562-z.
[13] Pashaie, F. and Mohammadpouri, A. (2017), Lk-biharmonic spacelike hypersurfaces in Minkowski 4-space E41
, Sahand Comm. Math. Anal., 5:1 , 21-30.
http://doi:10.22130/scma.2017.20589.
[14] O'Neill, B. (1983), Semi-Riemannian Geometry with Applicatins to Relativity, 2nd edition, Academic Press Inc..
[15] Pashaie, F. and Kashani, S. M. B. (2013), Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying Lkx = Ax + b, Bull. Iran. Math. Soc., 39:1, 195{213.
http://bims.iranjournals.ir/article338.html.
[17] Petrov, A. Z. (1969), Einstein Spaces, Oxford and New York: Pergamon Press, Hungary.
[18] Turgay, N. C. (2014), Some classi cations of biharmonic Lorentzian hypersurfaces in Minkowski 5-space E51
, Mediterr. J. Math., 13:1, 401-412. http://doi: 10.1007/s00009-014-0491-1.