1] Abbas, S. E., El-Sanowsy, S., & Khiamy, H. M. (2023). Certain approximation spaces using local functions via idealization, Sohag J. Sci., 8(3), 311{321. DOI:10.21608/sjsci.2023.201184.1072.
[4] Choquet, G. (1947). Sur les notions de lter et grille, Comptes Rendus Acad. Sci. Paris, 224, 171-173.
[8] Hatr, E. (2013). On decompositions of continuity and complete continuity in ideal topological spaces. Eur. J. Pure Appl. Math., 6(3), 352{362.
[9] Hayashi, E. (1964). Topologies de ned by local properties, Math. Ann., 156, 205-215.
[11] Samuel, P. (1975). A topology formed from a given topology and ideal, J. Lond. Math. Soc., 10, 409-416.
[12] Kuratowski, K. (1933). Topologie I, Warszawa.
[13] Modak, S. (2013). Topology on grill- lter space and continuity, Bol. Soc. Paran. Mat., 31(2) , 219-230.
[14] Modak, S. (2013). Grill- lter space, J. Indian Math. 80(3-4), 313-320.
[15] Navaneethakrishnan, M., & Joseph, J. P. (2008). g-Closed sets in ideal topological spaces, Acta Math. Hungar., 119, 365{371.
https://ijmaa.in/index.php/ijmaa.
[16] Njastad, O. (1966). Remarks on topologies de ned by local properties, Avh. Norske Vid.-Akad. Oslo I (N.S.), 8, 1-16.
[17] Stone, M. H. (1937). Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 375-481.
https://doi.org/10.2307/1989788.
[19] Vaidyanathaswamy, R. (1945). The localization theory in set topology, Proc. Indian Acad. Sci. Math. Sci, 51{61.
[20] Velicko, N. V. (1968). H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2), 103-118.