New generalized closure operators induced by local functions via ideals

Document Type : Research Paper

Authors

1 Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt

2 Mathematics Department, Faculty of Science, Benha University, Benha 13518, Egypt

Abstract

This work aims to introduce and examine four new operators based on the topological structure “ideal” and the notion of “generalized” generating two generalized ideal topological spaces. The proposed structures are discussed in detail in terms of topological properties and some basic theories. Moreover,  we obtain bases for the generated generalized ideal topological spaces. Further,  we define the concept of topology suitable for an ideal. In addition,  we provide several essential findings pertaining to these novel frameworks. We also provide several counterexamples that are related to our findings.

Keywords

Main Subjects


1] Abbas, S. E., El-Sanowsy, S., & Khiamy, H. M. (2023). Certain approximation spaces using local functions via idealization, Sohag J. Sci., 8(3), 311{321. DOI:10.21608/sjsci.2023.201184.1072.
[2] Acharjee, S, Ozkoc, M., & Issaka, F. Y. (2025). Primal topological spaces. Bol. Soc. Parana. Mat., 43, 1-9. DOI: https://doi.org/10.5269/bspm.66792.
[3] Arenas, G., Dontchev, J., & Puertas, M. L. (2000). Idealization of some weak separation axioms, Acta Math. Hungar., 89, 47{53. https://link.springer.com/article/10.1023/A:1026773308067.
[4] Choquet, G. (1947). Sur les notions de  lter et grille, Comptes Rendus Acad. Sci. Paris, 224, 171-173.
[5] Csaszar, A. (2002). Generalized topology, generalized continuity. Acta Math. Hungar., 96, 351-357. https://doi.org/10.1023/A:1019713018007
[6] Csaszar, A. (2004). Separation axioms for generalized topologies. Acta Math. Hungar., 104, 63-69. https://doi.org/10.1023/B:AMHU.0000034362.97008.c6.
[7] Ekici, E. (2011). On I-Alexandro  and Ig-Alexandro  ideal topological spaces. Filomat, 25(4), 99{108. https://www.jstor.org/stable/24895578.
[8] Hatr, E. (2013). On decompositions of continuity and complete continuity in ideal topological spaces. Eur. J. Pure Appl. Math., 6(3), 352{362.
[9] Hayashi, E. (1964). Topologies de ned by local properties, Math. Ann., 156, 205-215. 
[10] Jankovic, D., & T. R. Hamlett, T.R. (1990). New topologies from old via ideals, Amer. math. monthly, 97(4), 295-310. https://doi.org/10.1080/00029890.1990.11995593.
[11] Samuel, P. (1975). A topology formed from a given topology and ideal, J. Lond. Math. Soc., 10, 409-416.
[12] Kuratowski, K. (1933). Topologie I, Warszawa.
[13] Modak, S. (2013). Topology on grill- lter space and continuity, Bol. Soc. Paran. Mat., 31(2) , 219-230.
[14] Modak, S. (2013). Grill- lter space, J. Indian Math. 80(3-4), 313-320.
[15] Navaneethakrishnan, M., & Joseph, J. P. (2008). g-Closed sets in ideal topological spaces, Acta Math. Hungar., 119, 365{371. https://ijmaa.in/index.php/ijmaa.
[16] Njastad, O. (1966). Remarks on topologies de ned by local properties, Avh. Norske Vid.-Akad. Oslo I (N.S.), 8, 1-16.
[17] Stone, M. H. (1937). Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 375-481. https://doi.org/10.2307/1989788.
[18] Tyagi, B. K., & Chauhan, H. V. S. (2016). On generalized closed sets in generalized topological spaces. Cubo, 18, 27{45. https://doi.org/10.4067/S0719-06462016000100003.
[19] Vaidyanathaswamy, R. (1945). The localization theory in set topology, Proc. Indian Acad. Sci. Math. Sci, 51{61.
[20] Velicko, N. V. (1968). H-closed topological spaces, Amer. Math. Soc. Transl. 78 (2), 103-118.
[21] Yinbin, L., & Zhang, J. (2019). Generalizing topological set operators. Electr. Notes Theoret. Comput. Sci., 345, 63-76. https://doi.org/10.1016/j.entcs.2019.07.016.

Articles in Press, Accepted Manuscript
Available Online from 12 March 2025
  • Receive Date: 05 October 2024
  • Revise Date: 28 January 2025
  • Accept Date: 11 March 2025