Optimal $Z$-eigenvalue bounds and rank-one approximations

Document Type : Research Paper

Authors

1 Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Department of Mathematics, University of Hormozgan, Bandar Abbas, Iran

Abstract

This study explores the $Z$-eigenvalue inclusion theorem, focusing on its role in improving the best rank-one approximation for tensors. We propose novel inclusion sets inspired by Brauer and Brualdi’s frameworks, offering sharper bounds on $Z$-eigenvalues. These sets are demonstrated to provide more accurate results than existing approaches. Additionally, we apply these results to obtain refined estimates of best rank-one approximation, particularly for weakly symmetric nonnegative tensors. The paper includes numerical examples to validate the enhanced bounds presented.

Keywords

Main Subjects


1] Ammar, A., Chinesta F., & Falco A. (2010). On the convergence of a greedy rank-one update algorithm for a class of linear systems. Archives of Computational Methods in Engineering, 17(4), 473-486. https://doi.org/10.1007/s11831-010-9048-z
[2] Brauer, A. (1947). Limits for the characteristic roots of a matrix. II. Duke Mathematical Journal, 14(1), 21-26. https://doi.org/10.1215/S0012-7094-47-01403-8
[3] Brualdi, R. A. (1982). Matrices eigenvalues, and directed graphs. Linear and Multilinear Algebra, 11(2), 143-165. https://doi.org/10.1080/03081088208817439
[4] Cardoso, J. F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11(1), 157-192. https://doi.org/10.1162/089976699300016863
[5] Chang, K. C., Pearson, K. J., & Zhang, T. (2013). Some variational principles for Z-eigenvalues of nonnegative tensors. Linear Algebra and its Applications, 438(11), 4166-4182. https://doi.org/10.1016/j.laa.2013.02.013
[6] Che, M., Cichocki, A., & Wei, Y. (2017). Neural networks for computing best rank-one approximations of tensors and its applications. Neurocomputing, 267(6), 114-133. https://doi.org/10.1016/j.neucom.2017.04.058
[7] Chen, L., Han, L., Yin, H., & Zhou, L. (2019). A homotopy method for computing the largest eigenvalue of an irreducible nonnegative tensor. Journal of Computational and Applied Mathematics, 355(1), 174-181. https://doi.org/10.1016/j.cam.2019.01.008 
[8] Cobos, F., Kuhn, T., & Peetre, J. (1999). On Gp-Classes of Trilinear Forms. Journal of the London Mathematical Society 59(3), 1003-1022. https://doi.org/10.1112/S0024610799007504
[9] Comon, P. (1998, July). Blind channel identi cation and extraction of more sources than sensors. Advanced Signal Processing Algorithms, Architectures, and Implementations VIII, San Diego, United States, 2-13. https://doi.org/10.1117/12.325670
[10] Da Costa, M. N., Favier, G., & Romano, J. M. T. (2018). Tensor modelling of MIMO communication systems with performance analysis and Kronecker receivers. Signal Processing, 145, 304-316. https://doi.org/10.1016/j.sigpro.2017.12.015
[11] De Lathauwer, L., De Moor, B., & Vandewalle, J. (2000). On the best rank-1 and rank-(R1;R2; :::;Rn) approximation of higher-order tensors. SIAM journal on Matrix Analysis and Applications, 21(4), 1324-1342. https://doi.org/10.1137/S0895479898346995
[12] Goldberg-Zimring, D., Mewes, A. U., Maddah, M., & War eld, S. K. (2005). Di usion tensor magnetic resonance imaging in multiple sclerosis. Journal of Neuroimaging, 15, 68S-81S. https://doi.org/10.1177/1051228405283363
[13] He, J., & Huang, T. Z. (2014). Upper bound for the largest Z-eigenvalue of positive tensors. Applied Mathematics Letters, 38, 110-114. https://doi.org/10.1016/j.aml.2014.07.012
[14] He, J., Xu, G., & Liu, Y. (2022). New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial and Management Optimization, 18(3), 2095-2108. https://doi.org/10.3934/jimo.2021058
[15] Hillar, C. J., & Lim, L. H. (2013). Most tensor problems are NP-hard. Journal of the ACM (JACM), 60(6), 1-39. https://doi.org/10.1145/2512329
[16] Huang, Z., Wang, L., Xu, Z., & Cui, J. (2019). Some new Z-eigenvalue localization sets for tensors and their applications. Revista de la Union Matematica Argentina, 60(1), 99-119. https://doi.org/10.33044/revuma.v60n1a07
[17] Kolda, T. G., & Mayo, J. R. (2014). An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications, 35(4), 1563-1581. https://doi.org/10.1137/140951758
[18] Kolda, T. G., & Mayo, J. R. (2011). Shifted power method for computing tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications, 32(4), 1095-1124. https://doi.org/10.1137/100801482
[19] Li, W., Liu, D., & Vong, S. W. (2015). Z-eigenpair bounds for an irreducible nonnegative tensor. Linear Algebra and its Applications, 483(15), 182-199. https://doi.org/10.1016/j.laa.2015.05.033
[20] Lim, L. H. (2005, December). Singular values and eigenvalues of tensors: a variational approach. In 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 129-132. https://doi.org/10.1109/CAMAP.2005.1574201
[21] Liu, Q.,& Li, Y. (2016). Bounds for the Z-eigenpair of general nonnegative tensors. Open Mathematics, 14(1), 181-194. https://doi.org/10.1515/math-2016-0017
[22] Ng, M., Qi, L., & Zhou, G. (2010). Finding the largest eigenvalue of a nonnegative tensor. SIAM Journal on Matrix Analysis and Applications, 31(3), 1090-1099. https://doi.org/10.1137/09074838X
[23] Peter, M. (1987). Tensor Methods in Statistics. Chapman and Hall, London. 
[24] Qi, L. (2011). The best rank-one approximation ratio of a tensor space. SIAM Journal on matrix analysis and applications, 32(2), 430-442. https://doi.org/10.1137/100795802
[25] Qi, L. (2006). Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it de nes. Journal of Symbolic Computation, 41(12), 1309-1327. https://doi.org/10.1016/j.jsc.2006.02.011
[26] Qi, L. (2005). Eigenvalues of a real supersymmetric tensor. Journal of symbolic computation, 40(6), 1302-1324. https://doi.org/10.1016/j.jsc.2005.05.007
[27] Sang, C., & Chen, Z. (2022). Optimal Z-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial and Management Optimization, 18(4), 2435-2468. https://doi.org/10.3934/jimo.2021075
[28] Shen, F., Zhang, Y., & Wang, G. (2021). Identifying the positive de niteness of even-order weakly symmetric tensors via Z-eigenvalue inclusion sets. Symmetry, 13(7), 1239. https://doi.org/10.3390/sym13071239
[29] Song, Y., & Qi, L. (2013). Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM Journal on Matrix Analysis and Applications, 34(4), 1581-1595. https://doi.org/10.1137/130909135
[30] Uschmajew, A. (2015, May). Some results concerning rank-one truncated steepest descent directions in tensor spaces. In 2015 International Conference on Sampling Theory and Applications, Washington, DC, USA, 415-419. https://doi.org/10.1109/SAMPTA.2015.7148924
[31] Uschmajew, A. (2012). Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM Journal on Matrix Analysis and Applications, 33(2), 639-652. https://doi.org/10.1137/110843587
[32] Wang, Y., & Qi, L. (2007). On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numerical Linear Algebra with Applications, 14(6), 503-519. https://doi.org/10.1002/nla.537
[33] Wang, G., Zhou, G., & Caccetta, L. (2017). Z-eigenvalue inclusion theorems for tensors. Discrete and Continuous Dynamical Systems B, 22, 187-198. https://doi.org/10.3934/dcdsb.2017009
[34] Xiong, L., Liu, J., & Qin, Q. (2022). The geometric measure of entanglement of multi-partite states and the Z-eigenvalue of tensors. Quantum Information Processing, 21(3), 102. https://doi.org/10.1007/s11128-022-03434-8
[35] Zangiabadi, M., Tourang, M., Askarizadeh, A., & He, J. (2024). Some new Z-eigenvalue localization sets for even-order tensors and their application in the geometric measure of entanglement. Journal of Industrial and Management Optimization, 20(1), 347-367. https://doi.org/10.3934/jimo.2023081
[36] Zangiabadi, M., Tourang, M., Askarizadeh, A., & He, J. (2023). Determining the positive de niteness of even-order weakly symmetric tensors via Brauer-type Z-eigenvalue inclusion sets. Filomat, 37(17), 5641-5647. https://doi.org/10.2298/FIL2317641Z
[37] Zhang, X., Ling, C., & Qi, L. (2012). The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM Journal on Matrix Analysis and Applications, 33(3), 806-821. https://doi.org/10.1137/110835335

Articles in Press, Accepted Manuscript
Available Online from 12 March 2025
  • Receive Date: 25 October 2024
  • Revise Date: 28 January 2025
  • Accept Date: 11 March 2025