An efficient numerical technique for a specific family of singularly perturbed boundary value problems

Document Type : Research Paper

Authors

Department of Basic Sciences, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran

Abstract

This paper deals with a particular family of singularly perturbed two-point boundary value problems characterized by the perturbation parameter $0<\varepsilon\ll 1$, and it introduces a new numerical technique to approximate its solution. As the perturbation parameter $\varepsilon$ decreases, the majority of classic numerical methods that utilize uniform grids necessitate significantly reduced step sizes. Consequently, we employ a non-equidistant mesh. After discretizing the problem and constructed some high order compact methods, the original problem is transformed into a linear algebraic system. Also, it is demonstrated that the present method converges with order $4$ in $L_\infty$ norm. Finally, numerical simulations will demonstrate the efficacy of the proposed method and confirm the theoretical results.

Keywords

Main Subjects


 [1] Amiri, S. (2023). E ective numerical methods for nonlinear singular two-point boundary value Fredholm integro-di erential equations, Iran. J. Numer. Anal. Optim., 13 (3), 444-459.
[2] Amiri, S., & Hajipour, M. (2024). A compact discretization of the boundary value problems of the nonlinear Fredholm integro-di erential equations, J. Math. Model. 12 (2), 233-246.
[3] Bansal, K., & Sharma, K. K. (2021). A high order robust numerical scheme for the generalized Stein's model of neuronal variability, J. Di er. Equ. Appl., 27 (5), 637-663.
[4] Cengizci, S., Kumar, D., & Atay, M. T. (2023). A Semi-Analytic Method for Solving Singularly Perturbed Twin-Layer Problems With a Turning Point, Math. Model. Anal., 28 (1), 102-117.
[5] Hu, Z. (2021). Eigenvalues and eigenvectors of a class of irreducible tridiagonal matrices, Linear Algebra Appl., (619), 328-337.
[6] El-Zahar, E. R., Alotaibi, A.M., Ebaid, A., Baleanu, D., Machado, J. T., & Hamed, Y.S. (2020). Absolutely stable di erence scheme for a general class of singular perturbation problems, Adv. Di erence Equ., 411.
[7] Gracia, J.L., O'Riordan, E., & Pickett, M.L. (2006). A parameter robust second order numerical method for a singularly perturbed two-parameter problem, Appl. Numer. Math., 56 (7), 962-980.
[8] Kadalbajoo, M.K., & Reddy, Y. (1989). Asymptotic and numerical analysis of singular perturbation problems: a survey, Appl. Math. Comput. 30 (3), 223-259.
[9] Kevorkian, J., & Cole, J.D. (1981). Perturbation Methods in Applied Mathematics, Springer-Verlag, New York.
[10] Kaur, D., & Kumar, V. (2020). Numerical solution with special layer adapted meshes for singularly perturbed boundary value problems. In: Dutta, H., Peters, J. (eds) Applied Mathematical Analysis: Theory, Methods, and Applications, Studies in Systems, Decision and Control, Springer, 177.
[11] Kuang, Y. (1993). Delay Di erential Equations: With Applications in Population Dynamics, Academic press, Oval Road.
[12] Kumar, D. (2019). A parameter-uniform method for singularly perturbed turning point problems exhibiting interior or twin boundary layers, Int. J. Comput. Math., 96 (5), 865-882.
[13] Linss, T. (2000). Analysis of a Galerkin  nite element method on a Bakhvalov{Shishkin mesh for a linear convection{di usion problem, IMA J. Numer. Anal., 20 (4), 621-632.
[14] Linss, T. (1999). An upwind di erence scheme on a novel Shishkin-type mesh for a linear convection-di usion problem, J. Comput. Appl. Math., (110), 93-104.
[15] Linss, T., Roos, H-G., & Vulanovic, R. (2000). Uniform Pointwise Convergence on Shishkin-Type Meshes for Quasi-Linear Convection-Di usion Problems, SIAM J. Numer. Anal., 38 (3), 897-912.
[16] Liu, H., Xing, B., Wang, Z., & Li, L. (2020). Legendre Neural Network Method for Several Classes of Singularly Perturbed Di erential Equations Based on Mapping and Piecewise Optimization Technology, Neural. Process. Lett., (51), 2891-2913.
[17] Mackey, M.C., & Glass, L. (1977). Oscillation and chaos in physiological control systems, Science, 197 (4300), 287-289.
[18] Mohapatra, J., & Natesan, S. (2010). Parameter-uniform numerical method for global solution and global normalized 
ux of singularly perturbed boundary value problems using grid equidistribution, Comput. Math. Appl., 60 (7), 1924-1939.
[19] Mukherjee, K. (2018). Parameter-uniform improved hybrid numerical scheme for singularly perturbed problems with interior layers, Math. Model. Anal., 23 (2) 167-189.
[20] Munyakazi, J. B., & Patidar, K. C. (2014). Performance of Richardson extrapolation on some numerical methods for a singularly perturbed turning point problem whose solution has boundary layers, J. Korean Math. Soc., 51 (4), 679-702.
[21] Nhan, T. A., Stynes, M., & Vulanovic, R. (2018). Optimal uniform-convergence results for convection{di usion problems in one dimension using preconditioning, J. Comput. Appl. Math., (338), 227-238.
[22] O'Malley, R.E. Jr. (1974). Introduction to Singular Perturbations, Academic Press, New York.
[23] O'Malley, R.E. Jr. (1991). Singular Perturbation Methods for Ordinary Di erential Equations, Springer-Verlag, New York.
[24] Phaneendra, K., Rakmaiah, S., & Chenna Krishna Reddy, M. (2015). Numerical treatment of singular perturbation problems exhibiting dual boundary layers, Ain Shams Eng. J., 6 (3), 1121-1127.
[25] Prabha, T., Chandru, M., Shanthi, V., & Ramos, H. (2019). Discrete approximation for a two-parameter singularly perturbed boundary value problem having discontinuity in convection coecient and source term, J. Comput. Appl. Math., (359), 102-118.
[26] Ranjan, R., & Prasad, H.S. (2021). A novel approach for the numerical approximation to the solution of singularly perturbed di erential-di erence equations with small shifts, J. Appl. Math. Comput., (65), 403-427.
[27] Ranjan, R., & Prasad, H.S. (2022). A novel exponentially  tted  nite di erence method for a class of 2nd order singularly perturbed boundary value problems with a simple turning point exhibiting twin boundary layers, J. Ambient. Intell. Human Comput., (13), 4207-4221.
[28] Roy, N., & Jha, A. (2023). A parameter uniform method for two-parameter singularly perturbed boundary value problems with discontinuous data, MethodsX, 10.
[29] Sangeetha, G., Thirupathi, P., & Phaneendra, K. (2020). Non-standard  tted operator scheme for singularly perturbed boundary value problem, J. Math. Comput. Sci., (10), 793-804.
[30] Taussky, O. (1949). A recurring theorem on determinants, Amer. Math. Monthly., (56), 672-676.
[31] Villasana, M., & Radunskaya, A. (2003). A delay di erential equation model for tumor growth, J. Math. Biol., 47 (3), 270-294.
[32] Vulanovic, R. (2001). A Higher-Order Scheme for Quasilinear Boundary Value Problems with Two Small Parameters, Computing, (67), 287-303.
[33] Vulanovic, R. (2001). A priori meshes for singularly perturbed quasilinear two-point boundary value problems, IMA J. Numer. Anal., 21 (1), 349-366.
[34] Vulanovic, R., & Nhan, T.A. (2014). Uniform convergence via preconditioning, Int. J. Numer. Anal. Model. Ser. B, (5), 347-356.
[35] Wazewska-Czyzewska, M., & Lasota, A. (1976). Mathematical models of the red cell system, Mat. Stos., 6 (1), 25-40.
[36] Zahra, W.K., & Van Daele, M. (2018). Discrete Spline Solution of Singularly Perturbed Problem with Two Small Parameters on a Shishkin-Type Mesh, Comput. Math. Model., (29), 367-381.