Some results on complex $(p,q)- $extnsion Chebyshev wavelets

Document Type : Research Paper

Authors

1 Department of Mathematics Sciences, Yazd University, Yazd, Iran

2 Department of Materials and Metallurgical Engineering, National University of Skills(NUS), Tehran, Iran

Abstract

In this paper, we propose a generalized formula for well-known functions such as $(p,q)$-Chebyshev polynomials. Our  consideration is focused on determining properties of generalized Chebyshev polynomials of the first and second kind, sparking interest in constructing a theory similar to the classical one. We define complex $(p,q)-$Chebyshev wavelets. We estimate the wavelet approximation of a  continuous function $f \in L^2 [0,L]$.

Keywords

Main Subjects


[1] Altnkaya, & S., Yalcn, The (p; q)-Chebyshev polynomial bounds of a general biunivalent function class. Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 341{348. DOI:10.1007/s40590-019-00246-2.
[2] Brandi, & Ricci, P. E., Some properties of the pseudo-Chebyshev polynomials of half-integer degree Tbilisi Math. J. 12 (2019), no. 4, 111-121. DOI:10.32513/tbilisi/1578020571.
[3] C akmak, & M. Uslu, K. A., generalization of Chebyshev polynomials with well-known kinds and transition relations. Acta Univ. Apulensis Math. Inform. No. 57 (2019), 19-30. Doi: 10.17114/j.aua.2019.57.02.
[4] Dehghan, & M. Eslahchi, M. R., Best uniform polynomial approximation of some rational functions. Comput. Math. Appl. 59 (2010), no. 1, 382{390. DOI:10.1016/j.camwa.2009.07.016.
[5] Eslahchi, M. R. & Dehghan, M., The best uniform polynomial approximation to the class of the form 1
(a2x2) . Nonlinear Anal. 71 (2009), no. 3-4, 740-750. DOI:10.1016/j.camwa.2009.07.016.
[6] Kiepiela, K., & Klimek, D., An extension of the Chebyshev polynomials. J. Comput. Appl. Math. 178 (2005), no. 1-2, 305-312. https://doi.org/10.1016/j.cam.2004.06.021.
[7] Kumar, L. S., Mishra, S., &, Awasthi, S. K., Error bounds of a function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet and its applications in the approximation of functions. Carpathian Math. Publ. 14 (2022), no. 1, 29-48. https://doi.org/10.15330/cmp.14.1.29-48.
[8] Nigam, H. K. Mohapatra, R. N. & Murari, K., Wavelet approximation of a function using, Chebyshev wavelets. Thai J. Math. (2020), 197-208. https://doi.org/10.1186/s13660-020-02453-2.
[9] Mallet, Y., de Vel, O. , & Coomans D., Fundamentals of wavelet transform in Wavelets in Chemistry (Data Handling in Science and Technology). vol. 22, B.Walczak, Ed. Amsterdam, The Netherlands: Elsevier, 2000, pp. 57-84. https://doi.org/10.1186/s13660-020-02453-2.
[10] Jesmani, S. M., Mazaheri, H., & Shojaeian, S.,Wavelet approximation with Chebyshev. Iranian Journal of Numerical Analysis and Optimization. 14 (2024), no. 28, 315-329. doi: 10.22067/IJNAO.2023.84431.1315.
[11] Mason, J. C. & Handscomb, D. C. Chebyshev polynomials. Chapman and Hall/CRC, Boca Raton, FL, 2003.
[12] Rivlin, T. J., An introduction to the approximation of functions. Corrected reprint of the original. Dover Books on Advanced Mathematics. Dover Publications, Inc., New York, 1981. https://doi.org/10.1201/9781420036114.
[13] Tatarczak, A., An extension of the Chebyshev polynomials. Complex Anal. Oper. Theory 10 (2016), no. 7, 1519-1533. https://doi.org/10.1007/s11785-015-0503-6.

Articles in Press, Accepted Manuscript
Available Online from 14 May 2025
  • Receive Date: 12 February 2025
  • Revise Date: 02 May 2025
  • Accept Date: 13 May 2025