We give further results for Perron-Frobenius theory on the numerical range of real matrices and some other results generalized from nonnegative matrices to real matrices. We indicate two techniques for establishing the main theorem of Perron and Frobenius on the numerical range. In the rst method, we use a corresponding version of Wielandt's lemma. The second technique involves graph theory.
Zangiabadi, M., & Afshin, H. R. (2013). PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES. Journal of Mahani Mathematical Research, 2(2), 1-15. doi: 10.22103/jmmrc.2014.856
MLA
Mostafa Zangiabadi; Hamid Reza Afshin. "PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES", Journal of Mahani Mathematical Research, 2, 2, 2013, 1-15. doi: 10.22103/jmmrc.2014.856
HARVARD
Zangiabadi, M., Afshin, H. R. (2013). 'PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES', Journal of Mahani Mathematical Research, 2(2), pp. 1-15. doi: 10.22103/jmmrc.2014.856
VANCOUVER
Zangiabadi, M., Afshin, H. R. PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES. Journal of Mahani Mathematical Research, 2013; 2(2): 1-15. doi: 10.22103/jmmrc.2014.856