[1] B. Ahmad and S. Sivasundaram, Some existence results for fractional integro-dierential
equations with nonlinear conditions, Communications Appl. Anal., Vol.12 (2008), 107-
112.
[2] D. Bahuguna and J. Dabas, Existence and uniqueness of a solution to a partial integro-
dierential equation by the method of Lines, Electronic Journal of Qualitative Theory
of Dierential Equations, Vol.4 (2008), 1-12.
[3] K. Balachandran, J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional
integro-dierential equations in Banach spaces, Nonlinear Anal. Theory Meth. Applic.,
Vol.72 (2010), 4587-4593.
[4] J. Devi and Ch. Sreedhar, Generalized monotone iterative method for Caputo fractional
integro-dierential equations, Eur. J. Pure Appl. Math. Vol.9, No.4 (2016), 346-359.
[5] A. Hamoud and K. Ghadle, The approximate solutions of fractional Volterra-Fredholm
integro-dierential equations by using analytical techniques, Probl. Anal. Issues Anal.,
Vol.7 (25) (2018), 41-58.
[6] A. Hamoud and K. Ghadle, Modied Laplace decomposition method for fractional
Volterra-Fredholm integro-dierential equations, J. Math. Model., Vol.6 (2018), 91-104.
[7] A. Hamoud and K. Ghadle, Usage of the homotopy analysis method for solving fractional
Volterra-Fredholm integro-dierential equation of the second kind, Tamkang J. Math.
Vol.49 (2018), 301-315.
[8] A. Hamoud, K. Hussain and K. Ghadle, The reliable modied Laplace Adomian de-
composition method to solve fractional Volterra-Fredholm integro-dierential equations,
Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications and
Algorithms, Vol.26 (2019), 171-184.
[9] A. Hamoud and K. Ghadle, Existence and uniqueness of solutions for fractional mixed
Volterra-Fredholm integro-dierential equations, Indian J. Math. Vol.60 (2018), 375-395.
[10] A. Hamoud, K. Ghadle, M. Bani Issa and Giniswamy, Existence and uniqueness theo-
rems for fractional Volterra-Fredholm integro-dierential equations, Int. J. Appl. Math.
Vol.31 (2018), 333-348.
[11] A. Hamoud, K. Ghadle and S. Atshan, The approximate solutions of fractional integro-
dierential equations by using modied Adomian decomposition method, Khayyam J.
Math. Vol.5 (2019), 21-39.
[12] A. Hamoud and K. Ghadle, Some new existence, uniqueness and convergence results
for fractional Volterra-Fredholm integro-dierential equations, J. Appl. Comput. Mech.
Vol.5 (2019), 58-69.
[13] A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-
Fredholm integro-dierential equations, Advances in the Theory of Nonlinear Analysis
and its Application, Vol.4, No.4 (2020), 321-331.
[14] A. Hamoud, N. Mohammed and K. Ghadle, Existence and uniqueness results for
Volterra-Fredholm integro-dierential equations, Advances in the Theory of Nonlinear
Analysis and its Application, Vol.4, No.4 (2020), 361-372.
[15] R. Ibrahim and S. Momani, On the existence and uniqueness of solutions of a class
of fractional dierential equations, Journal of Mathematical Analysis and Applications,
Vol.334 (2007), 1-10.
[16] K. Logeswari, and C. Ravichandran, A new exploration on existence of fractional neutral
integro-dierential equations in the concept of Atangana-Baleanu derivative, Physica A:
Statistical Mechanics and Its Applications, Vol.544 (2020), 1-10.
[17] S. Momani, A. Jameel and S. Al-Azawi, Local and global uniqueness theorems on
fractional integro-dierential equations via Bihari's and Gronwall's inequalities, Soochow
Journal of Mathematics, 33(4), (2007) 619-627.
[18] S. M. Momani, Local and global uniqueness theorems on dierential equations of non-
integer order via Bihari's and Gronwall's inequalities, Revista Tecnica J., Vol.23 (2000),
66-69.
[19] K. Karthikeyan and J. Trujillo, Existence and uniqueness results for fractional integro-
dierential equations with boundary value conditions, Commun. Nonlinear Sci. Numer.
Simulat., Vol.17 (2012), 4037-4043.
[20] A. Khan, H. Khan, J.F. Gomez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam
stability for a nonlinear singular fractional dierential equations with Mittag-Leer
kernel, Chaos Solitons Fractals, Vol.127 (2019), 422-427.
[21] A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Dier-
ential Equations, North-Holland Math. Stud. Elsevier, Amsterdam, 2006.
[22] V. Lakshmikantham and M. Rao, Theory of Integro-Dierential Equations, Gordon and
Breach, London, 1995.
[23] M. Matar, Controllability of fractional semilinear mixed Volterra-Fredholm integro-
dierential equations with nonlocal conditions, Int. J. Math. Anal., Vol.4 (2010), 1105-
1116.
[24] K. Miller and B. Ross, An Introduction to the Fractional Calculus and Dierential
Equations, John Wiley, New York, 1993.
[25] B. Pachpatte, Inequalities for dierential and integral equations, Academic Press, New
York, 1998.
[26] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Theory and
Applications, Gordon and Breach, Yverdon, 1993.
[27] S. Tate, V. Kharat and h. Dinde, On nonlinear fractional integro-dierential equations
with positive constant coecient, Mediterranean Journal of Mathematics, Vol.16 (2019),
1-20.
[28] J. Wu and Y. Liu, Existence and uniqueness of solutions for the fractional integro-
dierential equations in Banach spaces, Electronic Journal of Dierential Equations,
Vol.2009 (2009), 1-8.