On the GTSOR-like Method for the Augmented systems

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P. O. Box 9453155111 Bojnord, Iran;

Abstract

In this paper, by using SOR-Like method that introduced by Golub, Wu and Yuan and generalized Taylor expansion method for solving linear systems [F.Toutounian, H. Nasabzadeh, A new method based on the
generalized Taylor expansion for computing a series solution of linear systems,
Appl. Math. Comput. 248 (2014) 602-609], the GTSOR-Like method is proposed for augmented systems. The convergence analysis and the choice of the
parameters of the new method are discussed. While there is no guarantee the
SOR-Like method converges for the negative parameter, ω additional parameters of the new method can be adjusted for the corresponding GTSOR-Like
method to converge. Finally, numerical examples are given to show that the
new method is much more efficient than the SOR-Like method.

Keywords


[1] M. Arioli,I.S. Du , P.P.M. de Rijk, On the augmented system approach to sparse least
squares problems, Numer. Math. 55 (1989) 667-684.
[2] D. Braess, Finite Elements:Theory, Fast Solvers, and Applications in Solid Mechanics,
second ed., Cambridge University Press, Cambridg, UK, 2001.
[3] J.H. Bramble, J.E. Pasciak, A.T. Vassilev, Analysis of the inexact Uzawa algorithm for
saddle point problems, SIAM J. Numer. Anal. 34 (1997) 10721092.
[4] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for
non-Hermitian positive de nite linear systems, SIAM J. Matrix. Anal. Appl. 24 (2003)
603626.
[5] Z.-Z. Bai, G.-Q. Li, Restrictively preconditioned conjugate gradient methods for systems
of linear equations, IMA J. Numer. Anal. 23 (2003) 561580.
[6] Z.-Z. Bai, B.N. Parlett, Z.-Q. Wang, On generalized successive overrelaxation methods
for augmented linear systems, Numer. Math. 102 (2005) 138.
[7] Z.-Z. Bai, Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle
point problems, Linear Algebra Appl. 428 (2008) 29002932.
[8] F. Brezzi, M. Fortin, Mixed and hybrid nite elements, in: Springer Series in Compu-
tational Mathematics, Springer-Verlag, New York, 1991. vol. 5.
[9] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programing, SIAM,
Philadelphia, PA, 2001.
[10] Z.-H. Cao, Positive stable block triangular preconditioners for symmetric saddle point
problems, Appl. Numer. Math. 57 (2007) 899910.
[11] M.-R. Cui, Analysis of iterative algorithms of Uzawa type for saddle point problems,
Appl. Numer. Math. 50 (2004) 133146.
[12] M.T. Darvishi , P. Hessari , Symmetric SOR method for augmented systems, Appl.
Math. Comput. 183 (2006) 409415.
[13] X. Dong, X.-H. Shao, H.-L. Shen, A new SOR-Like method for solving absolute value
equations, Appl. Num. Math. 156(2020)410-421.
[14] H.C. Elman, G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point
problems, SIAM J. Numer. Anal. 31 (1994) 16451661.
[15] H.C. Elman, D.J. Silvester, Fast nonsymmetric iterations and preconditioning for Navier-
Stokes equations, SIAM J. Comput. 17 (1996) 33-46.
[16] H.C. Elman, D.J. Silvester, A.J. Wathen, Finite Elements and Fast Iterative solvers:
With Applications in Incompressible Fluid Dynamics, Oxford University Press, New
York, 2005.
[17] G.H. Golub, X.Wu, J.-Y. Yuan, SOR-Like methods for augmented systems, BIT 41
(2001) 71-85.
[18] P. Guo, S.-L. Wu, C.-X. Li, On the SOR-Like iteratione method for solving absolute
value equations, Appl. Math. Lett. 97(2019) 107-113.
[19] M.-Q. Jiang, Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods
for generalized saddle point problems, J. Comput. Appl. Math. 231 (2009) 973982.
[20] A. Klawonn, Block-triangular preconditioners for saddle point problems with a penalty
term, SIAM J. Sci. Comput. 19 (1998) 172184.
[21] Y.-F. Ke, C.-F. Ma, SOR-Like iteration method for solving absolute value equations,
Appl. Math. Comput. 311(2017) 195-202.
[22] C.-J. Li, Z. Li, Y.-Y. Nie, D.J. Evans, Generalized AOR Method for the augmented
systems, Int. J. Comput. Math. 81 (2004) 495504.
[23] H.S. Naja , S.A. Edalatpanah , A new modi ed SSOR iteration method for solving
augmented linear systems, Int. J. Comput. Math. 91 (2014) 539552.
[24] F. Toutounian, H. Nasabzadeh, A new method based od generalized Taylor expansion for
computing a series solution of linear systems, Appl. Math. Comput. 248 (2014) 602-609.
[25] H.-D. Wang, Z.-D. Huang, On convergence and semi-convergence of SSOR-Like methods
for augmented linear systems, Appl. Math. Comput. 326(2018) 87-104.
[26] C. Wen , T.-Z. Huang , Modi ed SSOR-like method for augmented systems, Math.
Model. Anal. 16 (2011) 475487.
[27] M.H. Wright, Interior Methods for Constrained Optimization, vol. 1, Acta Numerica,
1992, pp. 341-407.
[28] S.J. Wright, Primal Dual Interior Point Methods, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1997.
[29] J.-F. Yin, Z.-Z. Bai, The restrictively preconditioned conjugate gradient methods on
normal residual for block two-by-two linear systems, J. Comput. Math. 26 (2008) 240249.
[30] J.-Y. Yuan, A.N. Iusem, Preconditioned conjugate gradient methods for generalized least
squares problem, J. Comput. Appl. Math. 71 (1996) 287-297.