On approximate orthogonally ring homomorphisms and orthogonally ring derivations in Banach algebras with the new type fixed point

Document Type : Research Paper

Authors

1 Mathematics Department-College of Science, Islamic Azad University Central Tehran Branch, Tehran, Iran.

2 Department of Mathematics, Semnan University, Semnan, Iran.

Abstract

In this paper,
Using fixed point methods, we prove the stability of orthogonally ring homomorphism and orthogonally ring derivation in Banach algebras.

Keywords


[1] N. Ansari, M.H. Hooshmand, M. Eshaghi Gordji, K. Jahedi, Stability of fuzzy orthogonally -n-derivation in orthogonally fuzzy C*-algebras, J. Nonlinear Anal. Appl. 12 (2021) 533{540 .
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64{66.
[3] R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006) 167{173.
[4] A. Bahraini, G. Askari, Homogeneous Equation Between Banach -Modules, Journal of Mathematical Analysis 9 (2018) 11{18.
[5] A. Bahraini, G. Askari, M. Eshaghi Gordji, R. Gholami, Stability and hyperstability of orthogonally -m-homomorphisms in orthogonally Lie C-algebras: a  xed point approach , J. Fixed Point Theory Appl. (2018), 1{12.
[6] H. Baghani, M. E. Gordji, M. Ramezani, Orthogonal sets: The axiom of choice and proof of a  xed point theorem, J.  Fixed Point Theory Appl., 18 (2016), 465{477.
[7] M. Bavand Savadkouhi, M.E. Gordji, J.M. Rassias, N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50 (2009), 20{29.
[8] L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A  xed point approach, Grazer Math. Ber. 346 (2004).
[9] L. Cadariu, V. Radu, Fixed points and the stability of Jensens functional equation, J. Ineq. Pure Appl. Math. 4 (2003).
[10] L. Cadariu, V. Radu, Fixed Point Methods for the Generalized Stability of Functional Equations in a Single Variabl, Fixed Point Theory Appl. (2008) 1{15.
[11] M. Eshaghi, H. Habibi, Existence and uniqueness of solutions to a  rst-order di erential equation via  xed point theorem in orthogonal metric space, FACTA UNIVERSITATIS (NIS) Ser. Math. 34 (2019) 123-135.
[12] M. Eshaghi Gordji, H Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algeb., 6 (2017), 251{260.
[13] M. Eshaghi Gordji, H. Habibi and M.B. Sahabi, Orthogonal sets; orthogonal contractions, Asian-Eur. J. Math. 12 (2019).
[14] M. Eshaghi Gordji, G. Askari, N. Ansari, G. A. Anastassiou and C. Park, Stability and hyperstability of generalized orthogonally quadratic ternary homomorphisms in non-Archimedean ternary Banach algebras: a  xed point approach, J. Computational Analysis And Applications, 21 (2016) 1{8.
[15] M. Eshaghi Gordji, M. Ramezani, M. De La Sen, and Y.J. Cho, On orthogonal sets and Banach  xed point theorem, Fixed Point Theory, 18 (2017), 569{578.
[16] M. Eshaghi Gordji, R. Farokhzad and S. A. R. Hosseinioun, Ternary (; ; )-derivations on Banach ternary algebras, Int. J. Nonlinear Anal. Appl., 5 (2014) 23{35.
[17] R. Farokhzad, S.A.R. Hosseinioun, Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative  xed point approach, Int. J. Nonlinear Anal. Appl. 1 (2010) 42{53.
[18] P. Gavruta, An answer to a question of John M. Rassias concerning the stability of Cauchy equation, In Advances in Equation and Inequalities, Hardronic Math Sel., (1999) 67{71.
[19] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431{436.
[20] P. Gavruta, L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010) 11{18.
[21] R. Gholami, G. Askari, M. Eshaghi Gordji, Stability and hyperstability of orthogonally ring -n-derivations and orthogonally ring -n-homomorphisms on C* algebras, J. Linear Topol. Algebra, 7 (2018), 109{119.
[22] H. Hosseini, M. Eshaghi, Fixed Point Results in Orthogonal Modular Metric Spaces, J. Nonlinear Anal. Appl. 11 (2020) 425{436.
[23] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941) 222{224.
[24] Y.S. Jung, On the generalized Hyers-Ulam stability of module left derivations, J. Math . Anal. Appl. 339 (2008) 108-114.
[25] B. Margolis, J.B. Diaz, A  xed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305{309.
[26] T. Miura, G. Hirasawa, S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006) 522{530.
[27] C. Park, M. Eshaghi Gordji, Comment on "Approximate ternary Jordan derivations on Banach ternary algebras Bavand Savadkouhi et al. J. Math. Phys. 50, (2009)] J. Math. Phys. 51 (2010).
[28] G. Polya, G. Szego, Aufgaben und lehrsatze der Analysis, Springer, Berlin, 1925.
[29] V. Radu, The  xed point alternative and the stability of functional equations, Sem. Fixed Point Theory 4 (2003) 91{96.
[30] J.M. Rassias, Complete solution of the multi-dimensional of Ulam, Discuss. Math. 14 (1994) 101{107.
[31] J.M. Rassias, On Approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982) 126{130.
[32] J.M. Rassias, On stability of the Euler-Lagrange functional equation, Chin. J. Math 20 (1992) 185{190.
[33] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.Math. Soc., 72 (1978) 297{300.
[34] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989) 268{273.
[35] P.  Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations and Operator Theory 18 (1994) 118{122.
[36] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
Volume 10, Issue 2
Special Issue Dedicated to Professor M. Radjabalipour on the occasion of his 75th birthday.
October 2021
Pages 115-124
  • Receive Date: 10 August 2020
  • Revise Date: 04 September 2021
  • Accept Date: 25 September 2021