[1] T. Ando, Majorization, doubly stochastic matrices, and comparision of eigenvalues, Linear Algebra Appl., 118, (1989), 163-248.
[2] C. Bebeacua, T. Mansour, A. Postnikov, S. Severini, On the X-rays of permutations, Electron. Notes Discrete Math., 20, (2005), 193-203.
[3] R.A. Brualdi, G. Dahl, Constructing (0, 1)-matrices with given line sums and a zero block, in: G.T. Herman, A. Kuba (Eds.), Advances in Discrete Tomography and Its Applications, Birkhuser, Boston, (2007), 113-123.
[4] R.A. Brualdi, E. Fritscher, Hankel and Toeplitz X-rays of permutations, Linear Algebra Appl., 449, (2014), 305-380.
[5] G. Dahl, L-rays of permutation matrices and doubly stochastic matrices, Linear Algebra Appl., 480, (2015), 127-143.
[6] A. Ilkhanizadeh Manesh, Sglt-Majorization on Mn;m and its linear preservers, J. Mahani Mathematical Reserch Center, 7, (2018), 57-125.
[7] A. Ilkhanizadeh Manesh, Right gut-Majorization on Mn;m, Electron. J. Linear Algebra, 31, (2016), 13-26.
[8] A. Mohammadhasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra, 15, (2006), 266-272.
[9] G.T. Herman, A. Kuba (Eds.), Discrete Tomography Foundations, Algorithms, and Applications, Appl. Numer. Harmon. Anal., Birkhuser, Basel, (1999).
[10] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, New York, (2011).